Энергетическая проблема и пути её решения. Перспективы альтернативной энергетики

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

на тему: «Глобальная энергетическая проблема»

Глобальная энергетическая проблема -- это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем. Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса -- увеличением автомобильного парка и ростом объема производства полимерных материалов. Основными экологическими проблемами являются проблема быстрого исчерпания невозобновимых ископаемых топлива при нарастающих темпах его потребления - проблема обеспеченностью нефтью, углём, природным газом, рост потребления электроэнергии, во много раз, превышающий её производство. Считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа -- на 62 года, а нефти -- на 37 лет. Сегодня суммарное потребление тепловой энергии в мире составляет колоссальную величину - более 1013 Вт в год (эквивалентно 36 млрд. тонн условного топлива).

Что касается перспектив ядерной энергетики, то все известные промышленные запасы урана будут исчерпаны уже в первом десятилетии XXI в. Учитывая затраты на добычу топлива, нейтрализацию, утилизацию и захоронение отходов, консервацию отработавших реакторов (а их ресурс не более 30 лет), расходы на социальные, природоохранные нужды, то стоимость энергии АЭС многократно превысит любой экономически допустимый уровень. По оценкам специалистов, только затраты на вывоз, захоронение и нейтрализацию накопившихся на российских предприятиях отходов ядерной энергетики составят около 400 млрд. долл., на обеспечение необходимого уровня технологической безопасности - 25 млрд. долл. С увеличением числа реакторов повышается вероятность их аварий. Таким образом, атомная энергетика не имеет долгосрочной перспективы.

Основные пути решения глобальной энергетической проблемы:

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения этого производства (Великобритания). Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов и перехода к нетрадиционным, альтернативным источникам энергии (АИЭ). Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли. Солнечная энергетика основана на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Достоинства: Общедоступность и неисчерпаемость источника и полная безопасность для окружающей среды. Недостатки: Зависимость от погоды и времени суток, Как следствие необходимость аккумуляции энергии,

Высокая стоимость конструкции, Необходимость периодической очистки отражающей поверхности от пыли, Нагрев атмосферы над электростанцией.

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии, а 2 % электроэнергии Германии было получено из фотоэлектрических установок. В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков другой проект на Украине - 80-мегаваттная электростанция Охотников в Сакском районе Крыма. Первая в России солнечная электростанция мощностью 100 кВт была запущена в сентябре 2010 года в Белгородской области. Сгенерированная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов -- или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд. тонн ежегодно.

Ветровая энергия. Ветровые турбины - довольно перспективный образ получать энергию из экологически чистого источника. Особенно в условиях подорожания нефти, газа и угля. Ветровая энергия конкурентоспособная в регионах со скоростью ветра от умеренной до высокой. Учитывая тот факт, что в процессе производства ветровой энергии не требуется ничего кроме ветровых установок. Нет расходов на закупку и доставку сырья, на уменьшение загрязнения окружающей среды. В отличие от современных электростанций, ветровая электростанция может работать бесперебойно даже в случае поломки на одной из ветряных турбин - ведь остальные установки будут работать. На полную мощность ветряная электростанция может работать только 10% времени, несмотря на то, что их строят в районах, где как правило ветрено. Однако ветровые установки производят электрическую энергию большинство времени своей работы (65-80%), хотя количество производимой энергии может меняться. Одна обычная двухмегаватная установка производит электрическую энергию для 600-800 домов. А при использовании новых технологий эта цифра может вырасти.

Термальная энергия земли. Некоторые страны мира (не все) богаты горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. К примеру, Исландия. Жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Даже работают электростанции, использующие горячие подземные источники. Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. топливо энергетическая проблема биоэнергетика

Энергия биомассы. Термин «биомасса» относится к органическим веществам, сохранившим в себе энергию Солнца благодаря процессу фотосинтеза. В первоначальном виде существует в форме растений. Дальше по пищевой цепочке может передаваться травоядным животным, а если их съедят - то и плотоядным. При сгорании биомассы (древесины, высушенной растительности) освобождается накопленная энергия и углекислый газ. На сегодняшний день эта отрасль занимает второе место после гидроэнергии из списка альтернативных источников из-за своей дешевизны и доступности. Она составляет 15 % от мировой поставки энергии и до 35 % - в развивающихся странах. Используется в основном для приготовления пищи и обогрева помещений.Положительной стороной является то, что будет выбрасываться меньше чистого углекислого газа, приводящего к парниковому эффекту. Но с другой стороны увеличится вырубка лесов. А на сегодняшний день это и так одна из глобальных проблем. Пустыни завоевывают все больше пространства. Некогда плодородная земля, оставшись без растительного покрова, будет подвергаться эрозии и растеряет органику.

Таким образом, глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует. Тем не менее, проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

Размещено на Allbest.ru

Подобные документы

    Проблемы электроэнергетики мира. Воздействие на окружающую среду энергетики. Топливно-энергетический баланс России. Пути решения энергетических проблем. Удельное энергопотребление на душу населения в мире. Альтернативные источники возобновляемой энергии.

    презентация , добавлен 12.12.2010

    Роль судов в транспортном процессе. Технический уровень оборудования судовой энергетической установки, анализ мероприятий, направленных на повышение ее энергетической эффективности. Модернизация основной и вспомогательной энергетических установок.

    дипломная работа , добавлен 11.09.2011

    Топливно-энергетический комплекс Республики Беларусь: система добычи, транспорта, хранения, производства и распределения всех видов энергоносителей. Проблемы энергетической безопасности республики, дефицит финансовых средств в энергетической отрасли.

    реферат , добавлен 16.06.2009

    Анализ первостепенных проблем глобальной энергетики и проблемы обеспечения человечества устойчивыми поставками электроэнергии. Энергетическая безопасность населения Земли. Политика энергоэффективности. Политика замещения. Новые технологии в энергетике.

    реферат , добавлен 13.01.2017

    Энергетическая проблема в современном мире. Понятие биоэнергетики, достижения в данной области. Биологическое топливо как продукт биоэнергетики, преимущества его использования. Механизмы преобразования энергии в процессе жизнедеятельности организмов.

    реферат , добавлен 19.10.2012

    Уравнения материальных и тепловых балансов для теплообменных аппаратов и точек смешения сред в рабочем контуре ядерной энергетической установки. Определение расхода пара на турбину, паропроизводительности парогенератора и мощности ядерного реактора.

    контрольная работа , добавлен 18.04.2015

    Современные проблемы топливно-энергетического комплекса. Альтернативная энергетика: ветряная, солнечная, биоэнергетика. Характеристика и методы использования, география применения, требования к мощностям водоугольного топлива, перспективы его развития.

    курсовая работа , добавлен 04.12.2011

    Структура и состав ядерной энергетической установки. Схемы коммутации и распределения в активных зонах. Требования надежности. Виды и критерии отказов ядерной энергетической установки и ее составных частей. Имитационная модель функционирования ЯЭУ-25.

    отчет по практике , добавлен 22.01.2013

    Характеристика структуры Единой энергетической системы России. Связи с энергосистемами зарубежных стран. Оптимизация обеспечения надежности электроснабжения и качества электроэнергии. Совершенствование средств диспетчерского и автоматического управления.

    реферат , добавлен 09.11.2013

    Разработка проекта модернизации энергетической установки судового буксира для повышения его тягового усилия, замена двигателей на более экономичные. Выбор энергетической и котельной установки, комплектация электростанции: дизель–генераторы, компрессоры.

Сырьевая проблема включает в себя построение на двух уровнях - национальном и международном (глобальном) - механизма, регулирующего рациональное производство, распределение и использование сырьевых ресурсов, а также развитие технологической основы для достижения этих целей. Энергетическая проблема несет в себе необходимость сбалансированного развития структуры энергобаланса и учета пределов производства энергии, а также механизма распределения энергоресурсов. Энергетические ресурсы во всей истории цивилизации играли важную роль для ее развития. Взлет цивилизаций древности зиждился на энергетических ресурсах массы рабов (считается, что 1 кВт/ч электроэнергии эквивалентен работе человека в течение 8 ч).

Как область экономики, энергетика охватывает энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Она является одним из основных средств жизнеобеспечения человечества и в то же время обусловливает истощение невозобновимых природных ресурсов и примерно 50% загрязнения окружающей среды. Ресурсная ограниченность нашей планеты делает острой проблемой энергосырьевой безопасности. Действительно, если экологические перспективы цивилизации поставить в зависимость от одного фактора, отличного от «глобальных экологических благ», этим фактором будут энергетические ресурсы. Человечество постоянно использовало все новые источники энергии: первоначально уголь, затем нефть, позднее природный газ и атомную энергию. За последние полтора века применение этих источников позволило человечеству развить экономику высоких достижений при одновременном увеличении населения Земли в четыре раза.

На нефть среди разнообразных источников энергии (уголь, нефть, газ, ядерная энергия, гидроэлектростанции, энергия ветра и солнца, биоэнергия) в последнее столетие приходилось 40% используемой энергии. На второй по значимости источник энергии - газ приходилось 25%. Предположительно нефть сохранит значение ведущего источника энергии и к 2030 г.

В энергетике различают традиционную и альтернативную составляющие. Традиционная энергетика основана на получении энергии из углеводородных энергоносителей (уголь, нефть, природный газ), а также к ней относятся атомная и гидроэнергетика. Возможности этого вида энергетики ограничены исчерпаемостью энергоносителей и значительным загрязнением окружающей среды. Исключением при этом является гидроэнергия, использование которой сопровождается затоплением значительных территорий (особенно при строительстве гидростанций в равнинных условиях). Во избежание грядущих глобальных ядерных катастроф и ради выживания человечества необходимо общее комплексное снижение ядерной опасности не только путем прекращения ядерных испытаний, нераспространения ядерного оружия и высоких ядерных технологий, но и путем (может быть, в перспективе) постепенного отказа от АЭС.

В научной литературе фиксируются три подхода к использованию атомной энергии в мирных целях: 1) в одних странах (Швеция, Норвегия и др.) реализуется программа консервирования и демонтажа существующих АЭС; 2) в других (Австрия, Бельгия и др.) полностью отказались от строительства АЭС, так как они не рассматриваются более как перспективные; 3) в третьих странах (Китай, Россия) сохраняется ориентация на развитие атомной энергетики (при этом основное внимание уделяется разработке мер по обеспечению ядерной безопасности). По данным Всемирной атомной ассоциации, сегодня в мире работает 443 атомных реактора, 62 энергоблока строится и запланировано строительство еще полутора сотен. Лидер в атомной энергетике - США, здесь работают свыше сотни реакторов. Быстрее всех мирный атом развивает Китай. Пекин строит 27 реакторов, запланировано возведение 50 ядерных энергоблоков.

При выборе энергетических предпочтений следует учитывать, что весь цикл строительства, функционирования и демонтажа АЭС, включая радиоактивные отходы, представляет определенную угрозу ядерной безопасности [Глобалистика, с. 1290-12941.

Во-первых, риск подрыва ядерной безопасности (нс только локальной, но и глобальной) связан с самим процессом получения энергии. Несмотря на то что ядерное производство постоянно контролируется на всех его этапах, но определенная утечка радиоактивных загрязнений в окружающую среду все же происходит, в результате чего население подвергается непрерывному облучению малыми дозами, что ведет к возрастанию онкологических и генетических заболеваний.

Во-вторых, важно учитывать, ограниченный срок службы любой АЭС. Предполагается, что в начале XXI в. по причине устаревания будут остановлены первые крупные АЭС (стоимость этих операций равняется 50-100% затрат на их сооружение).

В-третьих, не менее сложной представляется проблема обеспечения длительного экологически безопасного хранения радиоактивных отходов.

В-четвертых, самую большую угрозу ядерной безопасности представляет возможность аварии на АЭС. К началу XXI в. зафиксировано уже более 150 аварий на АЭС с утечкой радиоактивности. Авария на АЭС «Фукусима» в Японии (2011) вновь вынесла на повестку дня вопрос безопасности мирного атома и может оказать негативное влияние на всю атомную энергетику в мире, хотя о долговременных последствиях судить еще рано. Миру нужна энергетическая альтернатива мирному атому. Безусловно, будут разработаны дополнительные нормативы по безопасности, что, в свою очередь, увеличит стоимость строительства ядерпых объектов.

Специалисты считают, что если мировое сообщество будет иметь свыше 1000 реакторов, то каждые 10 лет с большой вероятностью следует ожидать тяжелую аварию. Для обеспечения ядерной безопасности необходим эффективный международный контроль (повышается роль МАГАТЭ), особенно в условиях массовой приватизации ядерного энергетического сектора в мире, когда значительно ослабляется контроль государства над ним. В этих условиях требуется пересмотр прежних подходов к традиционным и освоение новых технологий получения энергии из альтернативных источников, которые, возможно, начнут играть в XXI в. значительную роль.

Так, Китай наращивает потребление основных источников топлива. Согласно новому пятилетнему плану развития Китая, к 2015 г. потребление газа в этой стране вырастет со 100 млрд до 250 млрд м 3 в год. Для газа на мировом энергетическом рынке наступили «золотые времена», как и для его производителей. Потребление растет во всех регионах мира, особенно в Юго-Восточной Азии. Впрочем, там же разрабатываются и новые проекты по его добыче. В Азиатско-Тихоокеанском регионе скоро появятся мощности по добыче до 90 млрд м 3 газа в год, уже строятся мощности на 60 млрд м 3 добычи. Не исключается появление в перспективе и нетипичных на сегодня источников газа. В США и Канаде уже добывают сланцевый газ. В Китае, Индонезии и Австралии находится большое количество угольного метана. Спрос на нефть как основное энергетическое сырье остается высоким. В 2010 г. Россия получила от продажи энергоносителей за рубеж около 230 млрд долл. [Современная мировая политика; Уткин].

Альтернативные источники энергии противопоставляются традиционной энергетике как более экологичные и представляют собой собирательное понятие, охватывающее возобновляемые источники энергии (тепловые насосы, ветровая энергия, солнечная энергия, энергия приливов, биотехнологические процессы). Они становятся экономически все более выгодными, поскольку стоимость солнечных батарей за последние десятилетия сократилась и ожидается продолжение этой тенденции. Развитие альтернативной энергетики стимулируют в Японии (солнечная энергетика), Бразилии (принятая программа финансовой поддержки производства этилового спирта из сахарного тростника позволила заменить этим горючим половину бензина, потребляемого автомобилями страны) и других странах.

Исторический опыт позволил выделить ряд главных узлов, которые связывают энергетику и мировую политику. Во-первых, гипертрофированность зависимости энергетики многих стран от одного-двух энергоносителей. Политические противоречия между государствами могут обостряться из-за физической нехватки источников энергии, резких колебаний цен на них, а также из-за экологических последствий используемых энергоносителей. Во-вторых, опасность большого физического объема мировой торговли энергоресурсами. Опасность заключается в уязвимости гигантской международной транспортной инфраструктуры. По каналам мировой торговли поступает около трети первичных ресурсов, в том числе 50% всей добычи сырой нефти, сотни миллионов тонн угля, десятки миллиардов кубометров природного газа. В целом протяженность магистральных нефтепроводов 27 стран (которые охватывает статистика ООН) достигает 436 тыс. км. Ежегодно по этой трубопроводной сети прокачивается более 2 млрд т нефти и нефтепродуктов. Растянутость и уязвимость международной транспортной энергетической инфраструктуры ведут к тому, что се поддержание и защита рассматриваются правительствами ряда стран как важнейшая задача.

В-третьих, выделяется еще одна группа проблем, которая связана с противоречиями между поставщиком и получателем энергоресурсов, региональными конфликтами. Возникающая из-за этого неуверенность в надежности существующих транспортных коммуникаций все чаще становится обоснованием новых военно-морских и военно-воздушных программ, военно-политических акций, проводимых на международном уровне.

В-четвертых, возрастающая потребность в энергии и одновременная трудность удовлетворения этой потребности делают энергетику предметом острой политической борьбы. Энергетический террор может стать в будущем средством угрозы демократическим реформам, правам личности, глобальному миру и безопасности.

Широкое внедрение энергосберегающих технологий и активное развитие альтернативных источников энергии с 1970-х гг. так и не избавили мир от доминирующей роли углеводородов. Более того, проблема нефтегазового дефицита приобретает угрожающие черты, периодически порождая разговоры о приближении критической точки.

Такие виды возобновляемой энергии, как солнечная, энергия ядерного синтеза, биоэнергия и энергия ветра, станут крайне важными в будущем. Однако инновации в сфере энергетики потребуют многомиллионных инвестиций, и если новые энергетические решения не будут внедрены достаточно быстро, производительность труда и связанный с ним экономический рост сократятся.

Безопасная для мира и человечества энергетика должна включать в себя три главных направления: 1) осуществление качественного скачка в деле снижения потерь при добыче, производстве, транспортировке, преобразовании и потреблении энергоносителей; 2) создание и решительное внедрение энергосберегающих технологий, машин и потребительских товаров; 3) активная разработка и внедрение возобновляемых источников энергии и энергоносителей (солнце, биомасса, реки, ветер, геотермальные источники, энергоресурсы морей и океанов).

Однако с 1973 г. соотношение между основными и неосновными источниками энергии практически не изменилось. Согласно расчетам Международного энергетического агентства (МЭЛ), незначительно оно изменится и к 2030 г. На возобновляемую, альтернативную и прочую нетрадиционную энергию по разным оценкам будет приходиться от 11,4 до 13,5% мирового энергоснабжения, при этом нефть и газ к 2030 г. будут обеспечивать более половины энергетических потребностей [Современная мировая политика; Уткин]. Поскольку сырьевая база высокоразвитых стран, их транснациональных компаний истощается, то растет вес сырьевых стран, в руках которых находится весьма важный стратегический ресурс мировой политики. Такое положение дел приводит к возрастанию потенциала противоречий и конфликтов. Его снижение требует осмотрительности и гибкости от участвующих в политике. Политическая борьба за ресурсы может значительно обостриться из-за возрастающей готовности ряда стран мира для решения своих энергетических задач полагаться на силу. В этом случае экологическая, ресурсная и в целом глобальная безопасность могут быть подорваны, что на какое-то время негативно отразится на эффективности международных усилий по реализации стратегии устойчивого развития и даже может блокировать их.

Наша планета и наше общество находятся в процессе непрекращающегося развития, а это требует от нас – людей – своевременно приспосабливаться к изменениям в окружающей среде и условиях жизни. Любые перемены ведут к возникновению новых потребностей в мировом масштабе или в отдельных регионах и использованию новейших технологий для их удовлетворения. Часто оказывается, то, что недавно считалось современным, мгновенно становится устаревшим. Производители должны обладать определенным чутьем на появление новых тенденций, чтобы во время усовершенствовать свою продукцию. Это относится и к трансформаторам, которые, казалось бы, уже не нужно подвергать каким-либо изменениям.

Одно из самых значительных событий за последние несколько десятилетий на планете Земля связано с бурным ростом населения. С 1950 по 2010 оно выросло на 2,7 млрд. человек, а к концу 2011 составило более семи млрд. Более того, ожидается, что рост населения продолжится еще в течение нескольких десятилетий и пойдет на убыль только после 2050 года, к тому времени общее количество людей увеличится еще на 35% и составит 9,2 млрд. человек. Спрос на электроэнергию растет пропорционально росту населения.

Растущая потребность в электроэнергии и электричестве

Кроме увеличения численности население возрастающий спрос на электроэнергию обусловлен становлением развивающихся стран: так, рост ВВП на 1% требует увеличения потребления энергии на 0,6% в среднем. Совокупные расходы на электроэнергию составляют около 7-8 % от общемирового ВВП и представляют собою значительные издержки. Все эти факторы заставляют задуматься об организации высокоэффективных процессов производства и поставки электроэнергии. К тому же, проводя расчеты, важно оценить весь производственный цикл и включить расходы, связанные с энергопотерями и стоимостью оборудования.

Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов. В настоящее время электричество может быть использовано во всех сферах деятельности, так как представляет собой высококачественную форму энергии. К тому же оно не загрязняет окружающую среду. Все это предопределяет рост потребности в электричестве в будущем и его все упрочняющуюся роль на энергетическом рынке. Показательными примерами являются замена нефтяного или газового центрального отопления на электротепловые насосы или внедрение электромобилей.

И хотя суммарный КПД растет, что приводит к сокращению потребления первоначальных энергоресурсов, спрос на саму электроэнергию повышается. В то время как в развитых странах на одного человека в среднем приходится около одного 1 кВт, общемировое потребление составляет только 0,3 кВт. Такая статистика указывает на дальнейший значительный рост потребности в электричестве в развивающихся странах, а значит, и увеличение спроса на оборудование, обеспечивающее высокоэффективную передачу и распределение электроэнергии.

Существует один значительный фактор, определяющий рост потребности в электричестве в мировом масштабе, - это его необходимость для функционирования информационных и телекоммуникационных систем. Современные, большие центры обработки и передачи данных, например, относятся к крупнейшим потребителям электроэнергии.

Урбанизация

Еще одной заметной тенденцией является урбанизация. Все больше и больше людей переезжают из сельской местности в большие города. К 2050 году ожидается, что две трети всего населения будут проживать там, для сравнения: сейчас в городах проживает около половины.
Согласно Отделу народонаселения ООН в настоящее время насчитывается 24 мегаполиса с населением более 10 млн. человек. Обеспечить их всем необходимым: едой, товарами и коммунальными услугами – считается основной задачей современных логистических служб. Это также относится к поставкам электроэнергии. Плотность энерговыделения в местах массовой застройки небоскребами очень высока, поэтому необходимы новые решения для безопасного и надежного проведения электросетей в центрах больших городов. Слишком высокая стоимость недвижимости не позволяет размещать подстанции в домах, поэтому их устанавливают под землей.

Одна из наиболее значимых экологических проблем, которые имеют планетарное значение, связана с действием газов, вызывающих парниковый эффект, и изменением климата. Существует несколько видов эмиссий, которые способствуют этому процессу, однако больше всего опасений вызывает углекислый газ. Чтобы избежать существенного нагревания земной поверхности в ближайшие 20 лет, требуется пересмотреть политику и остановить необратимые изменения климата. В 2010 году общемировые выбросы углекислого газа, связанные с электроэнергетикой резко увеличились на 5,3% до рекордных 30,4 гигатон. Если подобная тенденция продолжится, то ожидается увеличение выбросов до 40 гигатон к 2030 году, а это может стать причиной потепления на 3,5 C° . Тем не менее, согласно 450 сценарию МЭА, ожидается, что выбросы, связанные с энергетикой, достигнут наивысшего показателя к 2020 года, а затем снизятся до 21,5 гигатон к 2035 году.

Рациональное использование электросетей может способствовать сокращению выбросов углекислого газа. Распределительные сети обычно на 95% более эффективны, а производительность трансформаторов распределительной сети выше на 99%. Несмотря на этот факт, огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети. Поэтому даже незначительные изменения в производительности трансформаторов способны существенно сократить выбросы углекислого газа.

Производительность трансформаторов рассматривается либо с точки зрения значения уровня потерь, либо уровня их КПД.

Значения КПД сравниваются при нагрузке 50%. Государственные стандарты, определяющие уровень энергопотерь трансформаторов, в последнее время претерпевают серьезные изменения: правительство и представители энергокомпаний стараются соответствовать своим обязательствам и обязанностям в сфере энергоэффективности и климатических изменений. Для разных стран характерны различные уровни эффективности трансформаторов. Низкий и средний упразднены – все страны переходят на высокий, очень высокий и сверхвысокий уровни. Сверхвысокий КПД могут показывать только трансформаторы с сердечником из аморфного металла.

Огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети.
Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов.

Еще одним ключевым моментом в борьбе против выбросов CO2 является получение электричества с помощью природных ресурсов: энергии ветра, солнца, волн и геотермальных источников. В 2011 году возобновляемые источники энергии (кроме крупных ГЭС) составили 44% дополнительных мощностей нового поколения по всему миру. В том же году общемировые инвестиции в возобновляемы источники энергии и топлива увеличился на 17 % и достиг новых рекордных показателей – 257 млрд. долларов, что в шесть раз превосходит показатели 2004 года. Согласно докладу МАЭ, посвященному перспективам развития мировой энергетики, ожидается, что доля возобновляемых энергоресурсов, обеспечивающих потребность в первичной энергии, возрастет на 8% к 2030 году.

Стабилизация напряжения за счет возобновляемых энергоносителей, традиционно используемая в трансформаторах высокого и среднего напряжения, в настоящее время будет востребована в электросетях среднего и низкого напряжения для обеспечения локальной стабилизации.

Ключевыми движущими силами для роста доли возобновляемых энергоресурсов являются предоставление правительством льгот и снижение затрат на производство. В 2011 году
стоимость фотоэлектрических модулей упала на 50%, стоимость ветряных турбин уменьшилась на 10%. Это сократило разницу в ценах между возобновляемыми источниками и ископаемыми энергоносителями. Если эта тенденция продолжится, то согласно МАЭ к 2020 году или даже раньше будет достигнут сетевой паритет, который позволит технологиям, использующим солнечную энергию, конкурировать на рынке с традиционными ископаемыми энергоносителями.

Затраты на оборудование с учетом всего срока службы

Чтобы определиться, инвестировать или нет, обычно производят расчеты окупаемости вложений, которые должны принимать во внимание не только стоимость отдельного оборудования, но и предполагаемые расходы в течение всего срока его эксплуатации. Затраты на оборудование предполагают первоначальные затраты при его покупке, затраты, связанные с его установкой, управлением, техническим обслуживание и утилизацией, также нужно учитывать затраты на энергопотери. Несмотря на то, что трансформаторы относятся к приборам, обеспечивающим высокий КПД – обычно более 99%, энергетические потери сводятся к приличным финансовым затратам, которые значительно превышают первоначальные. В такой ситуации энергокомпании все чаще используют специально разработанный метод, получивший название общая стоимость издержек (TOC) для того, чтобы определить окупаемость инвестиций. Этот показатель выражает величины потерь на холостом ходу и при нагрузке в денежном эквиваленте. В основном эти величины зависят от затрат на электроэнергию и условий инвестирования предприятия.

Одной из основных задач объединения различных источников генерирования электрической энергии является влияние на качество электроэнергии, особенно полосы напряжения, охватывающей разноплановые местные генераторы и технические условия сетевой нагрузки. В прошлом электроснабжение имело централизованный характер благодаря однонаправленному потоку электроэнергии, и основной проблемой были спады напряжения. Тем не менее, в настоящее время, а в будущем еще в большей степени в связи с применением различных источников генерирования электроэнергии, электропоток становится все более сложным, что ведет не только к спаду напряжения, но его скачкам. А это представляет собой новый уровень регулирования напряжения: традиционно стабилизация напряжения применялась в высоко- и средневольтных трансформаторах, сейчас она необходима и в средне- и низковольтных электросетях для обеспечения местной стабилизации.

Системный контроль

Еще одним развивающимся направлением является системный контроль за распределение электроэнергии, который позволяет операторам организовать надежную распределительную сеть и определять проблемы прежде, чем произойдет поломка. Можно легко установить вид неисправностей и их расположение и сократить время аварийного простоя.
Традиционно трансформаторы распределительной сети считались пассивными элементами оборудования, но в будущем им отведена более активная роль в обеспечении сетей надежностью и эффективностью.

Перспективы на будущее

Рост населения и увеличение потребления энергии – это главные причины выброса углекислого газа, следствием которого являются нежелательные изменения в климате. Для того, чтобы не допустить дальнейшее распространение этого негативного процесса, необходимо использовать энергосберегающие компоненты в электросетях и вводить технологии с низким содержанием углерода.

Топливно-энергетическая промышленность включает топливную отрасль (т.е. добычу и переработку различных видов топлива) и электроэнергетику.

Вся история человеческой цивилизации связана с освоением различных видов топлива и энергии. И в эпоху НТР энергетика оказывает огромное влияние на развитие и размещение производства.

Мировое производство и потребление первичных энергоресурсов все время растет: с менее чем 1 млрд. т. у. т. в 1990 году оно увеличилось до 10 млрд. т в 1990 г., а в 2000 г., вероятно, достигнет 14 млрд. т. Этот рост был особенно велик до 70-х годов, когда произошел мировой энергетический кризис (прежде всего - нефтяной). После кризиса темпы роста замедлились.

Существуют большие различия в топливно-энергетической промышленности по регионам и отдельным странам. Большая часть энергоресурсов производится в развивающихся странах и вывозится в США, Западную Европу и Японию.

Энергетическая проблема человечества относится к разряду глобальных и рассматривается обычно как глобальная энергосырьевая проблема. В таком масштабе она впервые проявилась в 70-х гг., когда разразились энергетический и сырьевой кризисы. Энергетический кризис ознаменовал конец эры дешевой нефти и вызвал подорожание сырья. И хотя затем нефть и другие энергоносители вновь подешевели, глобальная проблема обеспечения топливом и сырьем сохраняет свое значение и в наши дни.

Возникновение энергосырьевой проблемы объясняется прежде всего быстрым, взрывным ростом потребления минерального топлива и сырья и масштабами их добычи.

Решение электросырьевой проблемы на современном этапе развития мирового хозяйства должно идти интенсивным путем, который заключается в более рациональном использовании ресурсов или в осуществлении политики ресурсосбережения.

В эпоху дешевого топлива и сырья в большинстве стран мира сложилась ресурсоемкая экономика. В первую очередь это относилось к странам, наиболее богатым минеральными ресурсами. Но сейчас, в результате ресурсосберегающей политики экономически развитых стран Запада, энергоемкость их хозяйства значительно уменьшилась. А развивающиеся страны пока отстают от них в этом отношении. Из экономически развитых стран высокой ресурсоемкостью производства отличаются страны СНГ, ЮАР, Болгария и Австралия.

Мерами, способствующими сбережению ресурсов, должны стать увеличение извлечения из недр топливных и сырьевых ресурсов, а также повышение коэффициента полезного использования уже добытого топлива и сырья. Например, средний мировой уровень полезного использования первичных энергоресурсов - всего 1/3.

Кроме того, в ближайшие десятилетия можно ожидать изменения структуры мирового потребления первичных источников энергии: уменьшения доли нефти и угля в энергопотреблении и рост доли природного газа, гидроэнергии и альтернативных источников энергии.

Это поможет улучшить экологическую ситуацию, так как добыча нефти на шельфе, аварийные выбросы нефти, открытая добыча угля, а также употребление сернистых видов топлива негативно воздействует на природную среду.

Министерство сельского хозяйства и продовольствия Российской Федерации

ФГОУ ВПО Уральская государственная сельскохозяйственная академия

Кафедра экологии и зоогигиены

Реферат по экологии:

Энергетические проблемы человечества

Исполнитель: ANTONiO

студент ФТЖ 212Т

Руководитель: Лопаева

Надежда Леонидовна

Екатеринбург 2007


Введение. 3

Энергетика: прогноз с позиции устойчивого развития человечества. 5

Нетрадиционные источники энергии. 11

Энергия Солнца. 12

Ветровая энергия. 15

Термальная энергия земли. 18

Энергия внутренних вод. 19

Энергия биомассы.. 20

Заключение. 21

Литература. 23


Введение

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее. Уровень материальной, а, в конечном счёте, и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении.

Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые и специалисты различных сфер. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса. Были найдены принципиальные решения, определившие стратегию развития энергетики на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях.

Энергетика: прогноз с позиции устойчивого развития человечества

Согласно каким законам будет развиваться энергетика мира в будущем, исходя из ООНовской Концепции устойчивого развития человечества? Результаты исследований иркутских ученых, сопоставление их с работами других авторов позволили установить ряд общих закономерностей и особенностей.

Концепция устойчивого развития человечества, сформулированная на Конференции ООН 1992 г. в Рио-де-Жанейро, несомненно, затрагивает и энергетику. На Конференции показано, что человечество не может продолжать развиваться традиционным путем, который характеризуется нерациональным использованием природных ресурсов и прогрессирующим негативным воздействием на окружающую среду. Если развивающиеся страны пойдут тем же путем, каким развитые страны достигли своего благополучия, то глобальная экологическая катастрофа будет неизбежна.

В основе концепции устойчивого развития лежит объективная необходимость (а также право и неизбежность) социально-экономического развития стран третьего мира. Развитые страны могли бы, по-видимому, "смириться" (по крайней мере, на какое-то время) с достигнутым уровнем благосостояния и потребления ресурсов планеты. Однако речь идет не просто о сохранении окружающей среды и условий существования человечества, но и об одновременном повышении социально-экономического уровня развивающихся стран ("Юга") и приближении его к уровню развитых стран ("Севера").

Требования к энергетике устойчивого развития будут, конечно, шире, чем к экологически чистой энергетике. Требования неисчерпаемости используемых энергетических ресурсов и экологической чистоты, заложенные в концепции экологически чистой энергетической системы, удовлетворяют двум важнейшим принципам устойчивого развития - соблюдение интересов будущих поколений и сохранение окружающей среды. Анализируя остальные принципы и особенности концепции устойчивого развития, можно заключить, что к энергетике в данном случае следует предъявить, как минимум, два дополнительных требования:

Обеспечение энергопотребления (в том числе, энергетических услуг населению) не ниже определенного социального минимума;

Развитие национальной энергетики (так же, как и экономики) должно быть взаимно скоординировано с развитием ее на региональном и глобальном уровнях.

Первое вытекает из принципов приоритета социальных факторов и обеспечения социальной справедливости: для реализации права людей на здоровую и плодотворную жизнь, уменьшения разрыва в уровне жизни народов мира, искоренения бедности и нищеты, необходимо обеспечить определенный прожиточный минимум, в том числе, удовлетворение минимально необходимых потребностей в энергии населения и экономики.

Второе требование связано с глобальным характером надвигающейся экологической катастрофы и необходимостью скоординированных действий всего мирового сообщества по устранению этой угрозы. Даже страны, имеющие достаточные собственные энергетические ресурсы, как, например, Россия, не могут изолированно планировать развитие своей энергетики из-за необходимости учитывать глобальные и региональные экологические и экономические ограничения.

В 1998--2000 гг. в ИСЭМ СО РАН проведены исследования перспектив развития энергетики мира и его регионов в XXI веке, в которых наряду с обычно ставящимися целями определения долгосрочных тенденций в развитии энергетики, рациональных направлений НТП и т.п. сделана попытка проверки получаемых вариантов развития энергетики "на устойчивость", т.е. на соответствие условиям и требованиям устойчивого развития. При этом в отличие от вариантов развития, разрабатывавшихся ранее по принципу "что будет, если...", авторы попытались предложить по возможности правдоподобный прогноз развития энергетики мира и его регионов в XXI веке. При всей его условности дается более реалистичное представление о будущем энергетики, ее возможном влиянии на окружающую среду, необходимых экономических затратах и др.

Общая схема этих исследований в значительной мере традиционна: использование математических моделей, для которых готовится информация по энергетическим потребностям, ресурсам, технологиям, ограничениям. Для учета неопределенности информации, в первую очередь по потребностям в энергии и ограничениям, формируется набор сценариев будущих условий развития энергетики. Результаты расчетов на моделях затем анализируются с соответствующими выводами и рекомендациями.

Основным инструментом исследований являлась Глобальная энергетическая модель GEM-10R. Эта модель - оптимизационная, линейная, статическая, многорегиональная. Как правило, мир делился на 10 регионов: Северная Америка, Европа, страны бывшего СССР, Латинская Америка, Китай и др. Модель оптимизирует структуру энергетики одновременно всех регионов с учетом экспорта-импорта топлива и энергии по 25-летним интервалам - 2025, 2050, 2075 и 2100 гг. Оптимизируется вся технологическая цепочка, начиная с добычи (или производства) первичных энергоресурсов, кончая технологиями производства четырех видов конечной энергии (электрической, тепловой, механической и химической). В модели представлено несколько сот технологий производства, переработки, транспорта и потребления первичных энергоресурсов и вторичных энергоносителей. Предусмотрены экологические региональные и глобальные ограничения (на выбросы СО 2 , SO 2 и твердых частиц), ограничения на развитие технологий, расчет затрат на развитие и функционирование энергетики регионов, определение двойственных оценок и др. Первичные энергетические ресурсы (в том числе, возобновляемые) в регионах задаются с разделением на 4-9 стоимостных категорий.

Анализ результатов показал, что полученные варианты развития энергетики мира и регионов по-прежнему трудно реализуемы и не вполне отвечают требованиям и условиям устойчивого развития мира в социально-экономических аспектах. В частности, рассматривавшийся уровень энергопотребления представился, с одной стороны, трудно достижимым, а с другой стороны - не обеспечивающим желаемого приближения развивающихся стран к развитым по уровню душевого энергопотребления и экономического развития (удельному ВВП). В связи с этим был выполнен новый прогноз энергопотребления (пониженного) в предположении более высоких темпов снижения энергоемкости ВВП и оказания экономической помощи развитых стран развивающимся.

Высокий уровень энергопотребления определен исходя из удельных ВВП, в основном соответствующих прогнозам Мирового банка. При этом в конце XXI века развивающиеся страны достигнут лишь современного уровня ВВП развитых стран, т.е. отставание составит около 100 лет. В варианте низкого энергопотребления размер помощи развитых стран развивающимся принят исходя из обсуждавшихся в Рио-де-Жанейро показателей: около 0,7 % ВВП развитых стран, или 100-125 млрд дол. в год. Рост ВВП развитых стран при этом несколько уменьшается, а развивающихся - увеличивается. В среднем же по миру душевой ВВП в этом варианте увеличивается, что свидетельствует о целесообразности оказания такой помощи с точки зрения всего человечества.

Душевое потребление энергии в низком варианте в промышленно развитых странах стабилизируется, в развивающихся - возрастет к концу века примерно в 2,5 раза, а в среднем по миру - в 1,5 раза по сравнению с 1990 г. Абсолютное мировое потребление конечной энергии (с учетом роста населения) увеличится к концу начавшегося столетия по высокому прогнозу примерно в 3,5 раза, по низкому - в 2,5 раза.

Использование отдельных видов первичных энергоресурсов характеризуется следующими особенностями. Нефть во всех сценариях расходуется примерно одинаково - в 2050 г. достигается пик ее добычи, а к 2100 г. дешевые ресурсы (первых пяти стоимостных категорий) исчерпываются полностью или почти полностью. Такая устойчивая тенденция объясняется большой эффективностью нефти для производства механической и химической энергии, а также тепла и пиковой электроэнергии. В конце века нефть замещается синтетическим топливом (в первую очередь, из угля).

Добыча природного газа непрерывно увеличивается в течение всего века, достигая максимума в его конце. Две наиболее дорогие категории (нетрадиционный метан и метаногидраты) оказались неконкурентоспособными. Газ используется для производства всех видов конечной энергии, но в наибольшей степени - для производства тепла.

Уголь и ядерная энергия подвержены наибольшим изменениям в зависимости от вводимых ограничений. Будучи примерно равноэкономичными, они замещают друг друга, особенно в "крайних" сценариях. В наибольшей мере они используются на электростанциях. Значительная часть угля во второй половине века перерабатывается в синтетическое моторное топливо, а ядерная энергия в сценариях с жесткими ограничениями на выбросы СО 2 в больших масштабах используется для получения водорода.

Использование возобновляемых источников энергии существенно различается в разных сценариях. Устойчиво используются лишь традиционные гидроэнергия и биомасса, а также дешевые ресурсы ветра. Остальные виды ВИЭ являются наиболее дорогими ресурсами, замыкают энергетический баланс и развиваются по мере необходимости.

Интересно проанализировать затраты на мировую энергетику в разных сценариях. Меньше всего они, естественно, в двух последних сценариях с пониженным энергопотреблением и умеренными ограничениями. К концу века они возрастают примерно в 4 раза по сравнению с 1990 г. Наибольшие затраты получились в сценарии с повышенным энергопотреблением и жесткими ограничениями. В конце века они в 10 раз превышают затраты 1990 г. и в 2,5 раза - затраты в последних сценариях.

Следует отметить, что введение моратория на ядерную энергетику при отсутствии ограничений на выбросы СО 2 увеличивает затраты всего на 2 %, что объясняется примерной равноэкономичностью АЭС и электростанций на угле. Однако, если при моратории на ядерную энергетику ввести жесткие ограничения на выбросы СО 2 , то затраты на энергетику возрастают почти в 2 раза.

Следовательно, "цены" ядерного моратория и ограничений на выбросы СО 2 очень велики. Анализ показал, что затраты на снижение выбросов СО 2 могут составить 1-2 % от мирового ВВП, т.е. они оказываются сопоставимыми с ожидаемым ущербом от изменения климата планеты (при потеплении на несколько градусов). Это дает основания говорить о допустимости (или даже необходимости) смягчения ограничений на выбросы СО 2 . Фактически требуется минимизировать сумму затрат на снижение выбросов СО 2 и ущербов от изменения климата (что, конечно, представляет исключительно сложную задачу).

Очень важно, что дополнительные затраты на уменьшение выбросов СО 2 должны нести, главным образом, развивающиеся страны. Между тем, эти страны, с одной стороны, не виновны в создавшемся с тепличным эффектом положении, а с другой - просто не имеют таких средств. Получение же этих средств от развитых стран, несомненно, вызовет большие трудности и это - одна из серьезнейших проблем достижения устойчивого развития.

В XXI веке мы трезво отдаём себе отчёт в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Энергия Солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % - полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км 2 ! Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощённой коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10 9 тонн.

Ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1*10 6 до 3*10 6 км 2 . В то же время общая площадь пахотных земель в мире составляет сегодня 13*10 6 км 2 . Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов.

В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам прошлого столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт. Здесь же, в Калифорнии, в 1994 году было введено еще 480 МВт электрической мощности, причем, стоимость 1 кВт/ч энергии – 7-8 центов. Это ниже, чем на традиционных станциях. В ночные часы и зимой энергию дает, в основном, газ, а летом и в дневные часы – солнце. Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива. Наиболее вероятной “кандидатурой” является водород.

Его получение с использованием солнечной энергии, например, путем электролиза воды может быть достаточно дешевым, а сам газ, обладающий высокой теплотворной способностью, легко транспортировать и длительно хранить. Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, которая просматривается сегодня – направлять ее для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы. Быстрое развитие гелиоэнергетики стало возможным благодаря снижению стоимости фотоэлектрических преобразователей в расчете на 1 Вт установленной мощности с 1000 долларов в 1970 году до 3-5 долларов в 1997 году и повышению их КПД с 5 до 18%. Уменьшение стоимости солнечного ватта до 50 центов позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельэлектростанциями.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания. В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Первой лопастной машиной, использовавшей энергию ветра, был парус. Парус и ветродвигатель кроме одного источника энергии объединяет один и тот же используемый принцип. Исследования Ю. С. Крючкова показали, что парус можно представить в виде ветродвигателя с бесконечным диаметром колеса. Парус является наиболее совершенной лопастной машиной, с наивысшим коэффициентом полезного действия, которая непосредственно использует энергию ветра для движения.

Ветроэнергетика, использующая ветроколеса и ветрокарусели, возрождается сейчас, прежде всего, в наземных установках. В США уже построены и эксплуатируются коммерческие установки. Проекты наполовину финансируются из государственного бюджета. Вторую половину инвестируют будущие потребители экологически чистой энергии.

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский заинтересовался ветряками и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени – использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном “Фраме” он вращал динамомашину. На парусниках ветряки приводили в движение насосы и якорные механизмы.

В России к началу прошлого века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт.

В США к 1940 году построили ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей получила повреждение. Ее даже не стали ремонтировать – экономисты подсчитали, что выгодней использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной энергетике сороковых годов XX века не были случайны. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на крупных тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантирует и низкие цены и удовлетворительную экологическую чистоту.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

Термальная энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Энергия внутренних вод

Раньше всего люди научились использовать энергию рек. Но в золотой век электричества, произошло возрождение водяного колеса в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода. Можно считать, что современная гидроэнергетика родилась в 1891 году. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам.

Однако, чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. В 1926 году в строй вошла Волховская ГЭС, в следующем началось строительство знаменитой Днепровской. Энергетическая политика нашей страны, привела к тому, что у нас развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Энергоустановка на реке Ранс, состоящая из 24 реверсивных турбогенераторов, и имеющая выходную мощность 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции. Гидроэлектростанции являются наиболее экономически выгодным источником энергии. Но имеют недостатки - при транспортировке электроэнергии по линиям электропередач происходят потери до 30% и создаётся экологически опасное электромагнитное излучение. Пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия биомассы

В США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 12 метров под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. На ферме выращивались гигантские калифорнийские бурые водоросли. По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

К биомассе, кроме водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете “Санкт Петербургские Ведомости” была напечатана статья, под названием “Электричество... из куриного помёта” в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей... на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн киловатт-часов энергии.

Заключение

Можно выделить ряд общих тенденций и особенностей в развитии энергетики мира в начавшемся столетии.

1. В XXI в. неизбежен значительный рост мирового потребления энергии, в первую очередь, в развиваюшихся странах. В промышленно развитых странах энергопотребление может стабилизироваться примерно на современном уровне или даже снизиться к концу века. По низкому прогнозу, сделанному авторами, мировое потребление конечной энергии может составить в 2050 г. 350 млн Тдж/год, в 2100 г. - 450 млн Тдж/год (при современном потреблении около 200 млн Тдж/год).

2. Человечество в достаточной мере обеспечено энергетическими ресурсами на XXI век, но удорожание энергии неизбежно. Ежегодные затраты на мировую энергетику возрастут в 2,5-3 раза к середине века и в 4-6 раз к концу его по сравнению с 1990 г. Средняя стоимость единицы конечной энергии увеличится в эти сроки, соответственно, на 20-30 и 40-80 % (увеличение цен на топливо и энергию может быть еще значительнее).

3. Введение глобальных ограничений на выбросы СО 2 (наиболее важного тепличного газа) очень сильно повлияет на структуру энергетики регионов и мира в целом. Попытки сохранения глобальных выбросов на современном уровне следует признать нереальными из-за трудно разрешимого противоречия: дополнительные затраты на ограничение выбросов СО 2 (около 2 трлн долл./год в середине века и более 5 трлн долл./год в конце века) должны будут нести преимущественно развивающиеся страны, которые, между тем, "не виновны" в создавшейся проблеме и не имеют необходимых средств; развитые же страны вряд ли захотят и смогут оплатить такие затраты. Реалистичным с точки зрения обеспечения удовлетворительных структур энергетики регионов мира (и затрат на ее развитие) можно считать ограничение во второй половине века глобальных выбросов СО 2 до 12-14 Гт С/год, т.е. до уровня примерно в два раза выше, чем было в 1990 г. При этом сохраняется проблема распределения квот и дополнительных затрат на ограничение выбросов между странами и регионами.

4. Развитие ядерной энергетики представляет наиболее эффективное средство снижения выбросов СО 2 . В сценариях, где вводились жесткие или умеренные ограничения на выбросы СО 2 и отсутствовали ограничения на ядерную энергетику, оптимальные масштабы ее развития получились чрезвычайно большими. Другим показателем ее эффективности явилась "цена" ядерного моратория, которая при жестких ограничениях на выбросы СО 2 выливается в 80-процентное увеличение затрат на мировую энергетику (более 8 трлн долл./год в конце XXI в.). В связи с этим были рассмотрены сценарии с "умеренными" ограничениями на развитие ядерной энергетики для поиска реально возможных альтернатив.

5. Непременное условие перехода к устойчивому развитию - помощь (финансовая, техническая) наиболее отсталым странам со стороны развитых стран. Для получения реальных результатов такая помощь должна быть оказана в самые ближайшие десятилетия, с одной стороны, для ускорения процесса приближения уровня жизни развивающихся стран к уровню развитых, а с другой - чтобы такая помощь еще могла составить заметную долю в быстро увеличивающемся суммарном ВВП развивающихся стран.

Литература

1. Еженедельная газета сибирского отделения российской академии наук N 3 (2289) 19 января 2001 г

2. Антропов П.Я. Топливно-энергетический потенциал Земли. М., 1994

3. Одум Г., Одум Е. Энергетический базис человека и природы. М., 1998