Как получить кольца ньютона. Кольца ньютона

Рассмотрим другой случай, когда переменной величиной является толщина пластины d . Возьмем два параллельных луча 1 и 2 от монохроматического источника, падающих на поверхность прозрачного клина с углом  (рис. 5).

В результате отражения от верхней и нижней поверхностей клина когерентные световые лучи 1 и 1", 2" и 2" интерферируют в точках B 1 и В 2 , усиливая или ослабляя друг друга в зависимости от толщины клина в точках падения. Совокупности точек с одинаковой освещенностью образуют интерференционные полосы, которые в этом случае называются полосами равной толщины, поскольку каждая образована лучами, отраженными от мест с одинаковой толщиной клина.

Так как интерферирующие лучи пересекаются вблизи поверхности клина, то принято говорить, что полосы равной толщины локализованы вблизи поверхности клина. Их можно наблюдать невооруженным глазом, если угол  достаточно мал (1), или использовать микроскоп.

Кольца Ньютона

Частным случаем полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ воздушного зазора между плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны R (рис.6).

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхности воздушного зазора между линзой и пластинкой. Для наглядности лучи 1 и 1", отраженные от воздушного зазора, изображены рядом с падающим лучом. При наложении отраженных лучей возникают полосы равной толщины. Толщина воздушного зазора d меняется симметрично в разные стороны относительно точки касания линзы и пластины. Поэтому полосы равной толщины имеют вид концентрических окружностей, которые принято называть кольцами Ньютона.

Определим радиус r кольца Ньютона, образованного лучами, отраженными отповерхностей воздушного зазора толщиной d. Из рис.6 следует, что

Поскольку d  R , то членом d 2 можно пренебречь и тогда

(11)

Толщина зазора определяет оптическую разность хода , которая, с учетом потери полуволны на отражение, равна

(12)

Подставив сюда d из формулы (11), получим

(13)

Если
, то наблюдается светлое кольцо максимальной интенсивности, для радиуса которого формула (13) дает

(14)

где
– номер кольца. Если
, то наблюдается темное кольцо. Радиус т- го темного кольца равен

(15)

Из формул (14) и (15) следует, что радиусы колец Ньютона и расстояние между ними растут с увеличением радиуса кривизны линзы (или другими словами, с уменьшением угла между линзой и пластинкой).

Если на линзу падает белый свет, то в отраженном свете наблюдается центральное темное пятно, окруженное системой цветных колец, которые соответствуют интерференционным максимумам для разных длин волн. В проходящем све­те потеря полуволны /2 при отражении света от воздушной прослойки происходит дважды. Поэтому светлым кольцам в отраженном свете будут соответствовать темные кольца в проходящем свете и наоборот.

При наличии любых, даже незначительных дефектов на поверхности линзы и пластинки правильная форма колец искажается, что позволяет осуществлять быстрый контроль качества шлифовки плоских пластин и линз.

Лабораторная работа 302

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

Цель работы : изучить оптическую схему для наблюдения колец Ньютона, определить радиус кривизны линзы.

Оптическая схема для наблюдения колец Ньютона в отраженном свете представлена на рис. 7.

Свет от источника S проходит через конденсорную линзу К и попадает на наклонный светофильтр Ф, расположенный под углом 45° к направлению луча. Отразившись от светофильтра, свет попадает на линзу Л и далее – на воздушный клин, образованный линзой и пластиной П. Лучи, отраженные от верхней и нижней поверхностей клина, проходят сквозь линзу Л в обратном направлении и попадают в окуляр Ок зрительной трубы. Интерференционная картина, возникающая при их наложении, имеет вид чередующихся светлых и темных колец, интенсивность которых убывает к периферии (см. рис.6). В центре колец находится темное пятно минимум нулевого порядка.

Общий вид прибора для наблюдения колец Ньютона показан на рис. 8.

Он состоит из микроскопа 1, на предметном столике которого закреплена лампа накаливания 2, светофильтр 3, и плосковыпуклая линза 4, прижатая к плоскопараллельной пластине 5. Лампа питается от сети 220В через понижающий трансформатор 6. Микроскоп снабжен микрометрическим винтом 7, с помощью которого зрительная труба 8 микроскопа перемещается относительно предметного столика.

Для измерения радиуса колец окуляр микроскопа имеет одинарную и двойную реперные линии. Отсчеты производятся по миллиметровой шкале 9 и круговой шкале 10, проградуированной в сотых долях миллиметра.

Измерив радиус любого из колец Ньютона, можно рассчитать радиус кривизны линзы К, воспользовавшись формулами (14) или (15). Однако из-за деформации стекла в точке соприкосновения линзы и пластины точность такого расчета оказывается невысока. Для повышения точности радиус кривизны R рассчитывают по разности радиусов двух колец r m и r n . Записав формулу (15) для темных колец с номерами т и п, получим выражение:

(15)

При расчетах удобнее пользоваться формулой, в которой радиусы колец заменены на их диаметры d m и d n

(16)

Интерференция

Интерференцией света называют пространственное перераспределение светового потока при наложении двух или нескольких когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина).

Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны.

Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волны.

Волновые фронты, распространяющиеся от двух краев отверстия, пересекаются между собой. Там, где встречаются два гребня волны, яркость увеличивается, но там, где гребень встречается с впадиной, волны гасят друг друга, создавая темные области. В результате вместо простого изображения отверстия получается ряд чередующихся светлых и темных полос. Это явление называется интерференцией.

Интерференция возникает, когда две волны с одинаковой
длиной волны (1, 2) Движутся по одному пути. Они взаимо-
действуют, образуя новую волну (3). Если волны совпадают
по фазе(А), то интенсивность результирующей волны оказы-
вается выше, чем каждой из них. Если волны слегка сдвинуты
по фазе (В), то интенсивность результирующей волны близка
к интенсивности исходных волн. Если исходные волны нахо-
дятся в противофазе (B), то они полностью гасят друг друга

Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути.

При разности хода, равной четному числу длин полуволн наблюдается интерференционный максимум.

При разности хода, равной нечетному числу длины полуволн наблюдается интерференционный минимум.

Когда выполняется условие максимума для оной длины световой волны, то оно не выполняется для других волн.

Поэтому освещённая белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тонких пленках применяется для контроля качества обработки поверхностей, для просветления оптики

При освещении одного и того же участка светом различных источников интерференционные явления не наблюдаются.

Для получения устойчивой интерференционной картины необходимо обеспечить когерентность, или согласование, двух систем волн. Источники должны испускать когерентные волны, т.е. волны, обладающие одним периодом и неизменной разностью фаз на протяжении времени, достаточного для наблюдения.

В независимых источниках свет испускают различные атомы, условия, излучения которых быстро и беспорядочно меняются.

Интерференционная картина, получаемая от независимых источников сохраняется неизменной очень короткое время, а затем сменяется другой, с иным расположением максимумов и минимумов. Так как время, необходимое для наблюдения, измеряется, как сказано, тысячными и более долями секунды, то за это время интерференционные картины успеют смениться миллионы раз. Мы наблюдаем результат наложения этих картин. Такое наложение размывает картину

Если луч света расщепить на два, а затем заставить их соединиться вновь, то между ними возникнет интерференция - при условии, что пути, пройденные лучами, различны. Гребни и впадины двух волновых фронтов могут оказаться «не в фазе» (не совпадать точно), но световые лучи все равно про взаимодействуют. Такие интерференционные эффекты создаются двумя очень близко расположенными поверхностями, например тонкими пленками или двумя тесно сжатыми пластинками стекла, и приводят к появлению окрашенных полос. Радужные цвета, видимые в оперении птиц и на крыльях некоторых бабочек, вызваны явлением интерференции; тонкая структура крыла или пера образует своего рода дифракционную решетку или тонкую пленку.
Поскольку интерференция вызывается малым различием в величинах путей, пройденных волнами одной и той же длины, этот эффект можно использовать для обнаружения очедь малых изменений длины. Для этой цели служат приборы, называемые интерферометрами.

Б
Тонкие пленки, такие, как мыльные пузыри или нефтяные пятна на воде, обычно сияют всеми
цветами радуги. Часть света, проходящего через пленку, отражается от ее внутренней
поверхности и интерферирует с проходящим светом. Проходя пути различной длины, волны,
соответствующие некоторым цветам, на (А) – красному, оказываются в фазе и усиливают друг
друга. Другие волны, на (В) – показано синим, полностью гасят друг друга и потому невидимы.

Идеальным источником света является квантовый генератор (лазер), по своей природе является когерентным.

Дифракция

При прохождении света через малое круглое отверстие на экране вокруг цетрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и темных полос.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света.

Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой.

Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка.

Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.

Пусть на решетку падает монохроматический определенной длины волны свет. В результате дифракции на каждой щели свет распространяется не только в первоначальном направлении, но и по всем другим направлениям. Если за решеткой поставить собирающую линзу, то на экране в фокальной плоскости все лучи будут собираться в одну полоску

Параллельные лучи, идущие от краев соседних щелей, имеют разность хода дельта=d*sinφ, где d-постоянна решетки – расстояние между соответствующими краями соседних щелей, называемое периодом решетки, φ – угол отклонения световых лучей от перпендикуляра к плоскости решетки.

При разности хода, равной целому числу длин волн d*sinφ = k*λ, наблюдается интерференционный максимум для данной длины волны.

Условие интерференционного максимума выполняется для каждой длины волны при своем значении дифракционного угла φ.

В результате при прохождении через дифракционную решетку пучок белого света разлагается в спектр.

Угол дифракции имеет наибольшее значение для красного света, так как длина волны красного света больше всех остальных в области видимого света. Наименьшее значение угла дифракции для фиолетового света.

каждый луч света распространяется прямолинейно, что достигается непрерывным рядом волн, несущих колебательное движение в пространстве. Колебания всех волн, исходящих из источника света, складываются, создавая сферические волновые фронты, состоящие из чередующихся пиков и впадин энергии.
Тень, отбрасываемая каким-либо предметом, редко имеет четкие границы. Это объясняется тем, что источник света обычно не является точкой, а имеет некоторые размеры. Если источник бесконечно мал, то следовало бы ожидать, что он даст абсолютно резкую тень, поскольку, как считается, световые лучи распространяются прямолинейно. Однако на самом деле волны огибают край предмета – этот эффект называется дифракцией. Когда световые волны попадают на край предмета, ближайшие к нему точки начинают действовать как источники световых волн, распространяющихся во всех направлениях, – в результате световые лучи загибаются за край предмета. Длина волны света столь мала, что дифракцию трудно обнаружить на больших предметах, но она становится весьма заметной при прохождении света через малые отверстия, размеры которых сравнимы с длиной волны. Это происходит в дифракционной решетке, где свет проходит через очень узкие щели.

Дифракция возникает, когда световая
волна огибает край предмета. Обычно
этот эффект очень слаб. Однако если
световые волны проходят через отверс-
тие, размеры которого сравнимы с длиной
волны (для видимого света около
0,000055 см), то дифракция становится
наблюдаемой. Световые волны распростра-
няются от краев отверстия как от источ-
ников, и на экране образуется картина
чередующихся светлых и темных полос.

Дифракционная решетка представляет собой
сетку из тонких близко лежащих штрихов.
Когда через неё пропускают белый свет,
различные его составляющие отклоняются
под разными углами и расщепляются на сово-
купность цветов.

Принцип Гюйгенса:

Каждую точку среды, которой достигла волна, можно рассматривать как источник вторичных сферических волн, распространяющихся со скоростью, свойственной среде. Огибающая поверхность, то есть поверхность, касающаяся всех сферических вторичных волокон в том положении, которого они, достигнут к моменту времени t, и представляет собой волновой фронт в этот момент.

Кольца Ньютона

Ко́льца Нью́тона - кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину

Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному)

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.

Пример колец Ньютона

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Max, где - любое целое число, - длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

- min, где - любое целое число, - длина волны.

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

Оптическая длина пути,

Оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на , этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном - эллипсы.

Радиус k -го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

R - радиус кривизны линзы;

k = 1, 2, …;

λ - длина волны света в вакууме;

n - показатель преломления среды между линзой и пластинкой.

Функция рассеяния точки

Основным элементом при образовании изображения любого объекта являетсяизображение точки . Однако оптическая система никогда не изображает точку в виде точки . (А может прямая не прямая, а квадрат - не квадрат?) С одной стороны этому препятствуют аберрации оптической системы, с другой, - волновая природа света. Действие этих факторов приводит к тому, что изображение точки оказывается нерезким, расплывчатым. Мелкая структура объектов передается неправильно: изображения двух очень близко расположенных точек сливаются в одно пятно; изображения решеток сливаются в серый фон и т.п. По этим сведениям получают грубое качественное представление об изобразительных свойствах объектива.

Функция рассеяния точки (ФРТ, point spread function, PSF) - это функция, описывающая зависимость распределения освещенности от координат в плоскости изображения, если предмет - это светящаяся точка в центре изопланатической зоны (Условие изопланатизма : при смещении точки ее изображение тоже смещается на пропорциональную величину , где V - обобщенное увеличение).

Теория дифракции показывает, что даже при совершенном (безаберрационном) объективе изображение точки имеет вид некоторого светлого пятна, обладающего определенными габаритами и характерным распределением энергии в нем. Пятно имеет центральный максимум освещенности (диск Эри ), постепенно снижающийся до нуля, образуя вокруг центрального максимума темное кольцо. Концентрично к темному кольцу располагается светлое кольцо. Посмотрите на изображение в начале поста.

Безаберационная функция рассеяния точки симметрична относительно оптической оси. Центральный максимум содержит 83.8% всей энергии (его высота равна единице), первое кольцо - 7.2% (высота 0.0175), второе 2.8% (высота 0.0045), третье 1.4% (высота 0.0026), четвертое 0.9%. Общий вид распределения интенсивности функции рассеяния точки (картину Эри ) вы видите на рисунке.

Центральный максимум ФРТ называется диском Эри (Airy). Диаметр диска Эри в реальных координатах на изображении:

Где - апертура осевого пучка.

Диск Эри в общем случае может быть не круглым, если меридиональная и сагиттальная апертуры различны.

На функцию рассеяния точки влияет неравномерность пропускания по зрачку. Если пропускание уменьшается к краям зрачка, то центральный максимум ФРТ расширяется, а кольца исчезают. Если пропускание увеличивается к краям зрачка, то центральный максимум сужается, а интенсивность колец увеличивается. Эти изменения по-разному влияют на структуру изображения сложного объекта, и, в зависимости от требований, используются различные функции пропускания, "накладываемые" на область зрачка. Это явление называется аподизацией.

На рисунке вы видите: слева -- функция пропускания по зрачку; справа -- функция рассеяния точки.

Пример колец Ньютона

Описание

Классическое объяснение явления

Во времена Ньютона из-за недостатка сведений о природе света дать полное объяснение механизма возникновения колец было крайне трудно. Ньютон установил связь между размерами колец и кривизной линзы; он понимал, что наблюдаемый эффект связан со свойством периодичности света, но удовлетворительно объяснить причины образования колец удалось лишь значительно позже Томасу Юнгу . Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны . Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу .

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны , то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстаёт от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Δ = m λ {\displaystyle \Delta =m\lambda } - max,

где m {\displaystyle m} - любое целое число, - длина волны.

Напротив, если вторая волна отстаёт от первой на нечётное число полуволн, то колебания , вызванные ими, будут происходить в противоположных фазах , и волны гасят друг друга.

Δ = (2 m + 1) λ 2 {\displaystyle \Delta =(2m+1){\lambda \over 2}} - min,

где m {\displaystyle m} - любое целое число, λ {\displaystyle \lambda } - длина волны.

Для учёта того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода (разность оптических длин пути).

Если n r {\displaystyle nr} - оптическая длина пути, где n {\displaystyle n} - показатель преломления среды, а r {\displaystyle r} - геометрическая длина пути световой волны, то получаем формулу оптической разности хода :

n 2 r 2 − n 1 r 1 = Δ . {\displaystyle n_{2}r_{2}-n_{1}r_{1}=\Delta .}

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами тёмных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на π {\displaystyle \pi } ; этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном - эллипсы.

Радиус k -го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

r k = (k − 1 2) λ R n , {\displaystyle r_{k}={\sqrt {\left(k-{1 \over 2}\right){\frac {\lambda R}{n}}}},}

где R {\displaystyle R} - радиус кривизны линзы, k = 1 , 2 , . . . , {\displaystyle k=1,2,...,} λ {\displaystyle \lambda } -

Исаак Ньютон заметил странное явление: если положить обычную плосковыпуклую линзу неровной стороной на гладкую горизонтальную поверхность зеркала, то сверху можно увидеть кольца, расходящиеся от точки соприкосновения. Что это и почему так происходит, великий ученый объяснить не смог. Понял причину возникновения колец Ньютона гораздо позже такой же гениальный Юнг. Опираясь на новые открытия в области оптики, он объяснил это явление с помощью волновой теории света.

Как все это происходит

Каждая волна имеет собственную частоту колебания, а также верхние и нижние фазы колебания. Если два потока монохромного света (одинаковой частоты и ) совпадают фазами, то свет, который можно увидеть, будет в два раза ярче, сильнее. Если они не совпадают на полволны, то гасят друг друга, и тогда не видно ничего. Кольца – это чередование кругов усиления и поглощения световых волн.

Как же они образуются? Поток световых волн (относительно параллельных) падает перпендикулярно на плоскую поверхность линзы, проходя через нее. Часть волн отражается от нижней выпуклой поверхности, часть проходит дальше и отражается от горизонтальной плоскости зеркала. Стоит отметить, что лучи, отражаясь от линзы, уже не возвращаются пути (угол падения равен углу отражения).

Отражаясь и возвращаясь своим новым путем, они сливаются с теми потоками света, которые дошли до зеркала и вернулись такими же перпендикулярными. То есть в момент встречи «отстающих» волн с теми, которые отразились от линзы, может случиться как усиление (совпадение фаз), так и погашение (поглощение амплитуд). Переход между кольцами постепенный и увеличивается по мере удаления от центра, так как «лишнее» расстояние увеличивается постепенно от точки соприкосновения до края линзы.

Кольца Ньютона в повседневной жизни

Используя этот эффект, ученые научились легко измерять радиус кривизны поверхности, показатели преломления среды и длины волн световых лучей. Сегодня все эти достижения с успехом используются в науке и производстве.

В можно получить не только кольца Ньютона, но и настоящую круглую из них. Достаточно закрепить на стене белое полотно, затем на расстоянии метра от экрана укрепить систему из плосковыпуклой линзы и пластины. Они должны прикасаться друг к другу в самом центре линзы. Используйте направленный поток белого света (диапроектор, лазерная указка, фонарик), направляя его через импровизированный оптический прибор на вертикальный экран. Радужные окружности на стене - это и есть круги Ньютона.