Виды механической энергии формулы. Работа и механическая энергия

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.
Пусть тело В , движущееся со скоростью v , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой F и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила -F , касательная составляющая которой -F τ вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона


Следовательно,

Работа, совершаемая телом до полной его остановки равна:


Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

(3.7)

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной (E k ≥ 0 ).
Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

(3.8)

Из формулы (3.8) видно, что E k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость ν i . Другими словами, кинетическая энергия системы есть функция состояния ее движения .
Скорости ν i существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость ν i i -го тела системы, а, следовательно, его E ki и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной .
Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.
Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2 , где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).
Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

Где E no – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).
Если это же тело падает по наклонной плоскости длиной l и с углом наклона α к вертикали (lcosα = h ), то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков Δl i . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.
Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:


В свою очередь работа dA выражается как скалярное произведение силы F на перемещение dr , поэтому последнее выражение можно записать следующим образом:

(3.9)

Следовательно, если известна функция E n (r) , то из выражения (3.9) можно найти силу F по модулю и направлению.
Для консервативных сил

Или в векторном виде


где

(3.10)

Вектор, определяемый выражением (3.10), называется градиентом скалярной функции П ; i, j, k - единичные векторы координатных осей (орты).
Конкретный вид функции П (в нашем случае E n ) зависит от характера силового поля (гравитационное, электростатическое и т.п.), что и было показано выше.
Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:


Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

Кинетическая энергия – скалярная физическая величина, характеризующая движущееся тело и равная для материальной точки половине произведения ее массы на квадрат ее скорости:

Единицей кинетической энергии в СИ является джоуль (Дж).

При скоростях, близких к скорости света, следует пользоваться иным определением кинетической энергии.

Кинетическая энергия протяженного тела равна сумме кинетических энергий его малых частей, которые можно считать материальными точками.

Используя второй закон Ньютона, можно доказать теорему об изменении кинетической энергии тела: в инерциальной системе отсчета изменение кинетической энергии тела равно работе всех сил, как внутренних, так и внешних, действующих на это тело.

Если на прямолинейном участке траектории на тело, совершающее перемещение x , действуют две постоянные силыи, направленные под углами 1 и  2 к перемещению, то изменение кинетической энергии тела равно:

12. Механическая работа и мощность. Кпд.

Механическая работа A постоянной силына перемещение– это скалярная физическая величина, равная произведению модуля силыF , модуля перемещенияs и косинуса угла между направлениями силы и перемещения.

А = Fs cos =F x s ,

где F x – проекция силы на направление перемещения (рис. 4).

Работа постоянной силы в зависимости от угла между векторами силы и перемещенияможет быть положительной, отрицательной и равной нулю (рис. 5).

Единицей работы в СИ является джоуль (Дж).

В общем случае действия переменной силы на криволинейном участке траектории расчет работы оказывается более сложным.

Мощность – скалярная физическая величина, равная отношению работы силыA к промежутку времениt , в течение которого она была произведена:

Мощность силы может измеряться во времени N (t )

Единицей мощности в СИ является ватт (Вт).

При воздействии силы на тело, движущееся со скоростью(рис. 7), мощность этой силы равна:

N = F cos .

Часто термины работа и мощность относят к устройству, благодаря которому возникают силы, совершающие работу. Говорят о работе человека, мощности электродвигателя или двигателя автомобиля вместо работы и мощности силы натяжения веревки, с которой человек тянет сани, или работы и мощности внутренних сил или мощности сил сопротивления воздуха при движении автомобиля. В простейших случаях (подъемный кран поднимает груз) это вполне допустимо, однако в ряде случаев требует более аккуратного рассмотрения. Так, в случае движения автомобиля силой тяги является сила трения шин об асфальт, а ее работа равна нулю. В случае вертолета, зависшего над землей, сила тяги равна силе тяжести, мощность силы тяги равна нулю, однако энергия сгорающего топлива затрачивается на сообщение кинетической энергии потокам воздуха, отбрасываемого вниз.

При использовании простейших механизмов человек стремится совершить действия, которые не под силу выполнить «голыми руками» (поднять груз, сдвинуть тело и т.д.). Такие механизмы характеризуются физической величиной, называемой коэффициентом полезного действия (КПД). В механике обычно под КПД механизма понимают отношение полезной работы к затраченной.

Когда говорят о затраченной работе, то имеют в виду работу силы , которой человек воздействует на механизм. Если речь идет о полезной работе, то имеют в виду работу силы, приложенной к телу при его равномерном перемещении. Так, если человек поднимает груз с помощью системы блоков, перемещая конец веревки на длинуs 1 , а груз при этом перемещается (поднимается) на высоту s 2 под действием силы F 2 = mg , то КПД механизма, обозначаемый буквой , будет равен.

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Пусть тело В , движущееся со скоростью , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила , касательная составляющая которой вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона

Следовательно,

Работа, совершаемая телом до полной его остановки равна:

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной ().

Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

Из формулы (3.8) видно, что Е k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость . Другими словами, кинетическая энергия системы есть функция состояния ее движения .

Скорости существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость i -го тела системы, а, следовательно, его и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной .

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (Е п = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна (Е п = 0 при h = 0); для груза, прикрепленного к пружине, , где - удлинение (сжатие) пружины, k – ее коэффициент жесткости (Е п = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (Е п = 0 при ).


Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

где Е no – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).

Если это же тело падает по наклонной плоскости длиной l и с углом наклона к вертикали (, то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.

Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

В свою очередь работа dA выражается как скалярное произведение силы на перемещение , поэтому последнее выражение можно записать следующим образом:Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:

Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

Если тело может совершить механическую работу, то оно обладает механической энергией Е (Дж). Либо, если внешняя сила совершает работу, воздействуя на тело, его энергия изменяется.

Сучествует два вида механической энергии: кинетическая и потенциальная.

Кинетическая энергия – энергия движущихся тел:

где v (м/с) – модуль скорости, m – масса тела.

Потенциальная энергия – энергия взаимодействующих тел.

Примеры потенциальной энергии в механике.

Тело поднято над землей: Е = mgh

где h – высота, определяемая от нулевого уровня (или от нижней точки траектории). Форма траектории не важна, имеет значения только начальная и конечная высота.

Упруго деформированное тело. Деформация, определяемая от положения недеформированного тела (пружины, шнура и т.п.).

Потенциальная энергия упругих тел: , где k – жёсткость пружины; х – её деформация.

Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой.

- Полная механическая энергия.

Закон сохранения энергии : в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел.

E k1 + E p1 = E k2 + E p2 .

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

2. Трансформатор. Принцип действия. Устройство. Коэффициент трансформации. Передача электроэнергии.
Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов.

Трансформатор - устройство, применяемое для повышения или понижения напряжения переменного тока.

Впервые трансформаторы были использованы в 1878г. русским ученым П.Н.Яблочковым для питания изобретенных им «электрических свечей»- нового в то время источника света.

Простейший трансформатор представляет собой две катушки. Намотанные на общий стальной сердечник. Одна катушка подключается к источнику переменного напряжения. Эта катушка называется первичной обмоткой), а с другой катушки (называемой вторичной обмоткой) снимают переменное напряжение для дальнейшей его передачи.

Переменный ток в первичной обмотке создает переменное магнитное поле. Благодаря стальному сердечнику вторичную обмотку, намотанную на тот же сердечник, пронизывает практически такое же переменное поле, что и первичную.

Поскольку все витки пронизываются одним и тем же переменным магнитным потоком , вследствие явления электромагнитной индукции в каждом витке генерируется одно и то же напряжение . Поэтому отношение напряжений 𝑈 1 и 𝑈 2 первичной и вторичной обмотках равно отношению числа витков в них:

Изменение напряжения трансформатором характеризует коэффициент трансформации

Коэффициент трансформации - величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

Повышающий трансформатор- трансформатор, увеличивающий напряжение ( У повышающего трансформатора число витков во вторичной обмотке должно быть больше числа витков в первичной обмотке, т.е. к<1.

Понижающий трансформатор – трансформатор, уменьшающий напряжение ( У понижающего трансформатора число витков во вторичной обмотке должно быть меньше числа витков в первичной обмотке, т. е к>1.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой. Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц.

Билет № 12

Закон Паскаля. Закон Архимеда. Условия плавания тел.

Формулировка закона Паскаля

Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях. Это утверждение объясняется подвижностью частиц жидкостей и газов во всех направлениях.

На основе закона Паскаля гидростатики работают различные гидравлические устройства: тормозные системы, прессы и др.

Закон Архимеда - это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

F A = ρgV,
где ρ - плотность жидкости (газа),
g - ускорение свободного падения,
V - объем погруженного тела (или объем той части тела, которую погрузили в жидкость (или газ)).

Архимедова сила направлена всегда противоположно силе тяжести . Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что в состоянии невесомости закон Архимеда не работает .

Слово "энергия" происходит из греческого языка и имеет значение «действие", "деятельность». Само понятие было впервые введено английским физиком в начале XIX века. Под «энергией» понимается способность обладающего этим свойством тела совершать работу. Тело способно совершать тем большую работу, чем большей энергией оно обладает. Существует несколько ее видов: внутренняя, электрическая, ядерная и механическая энергии. Последняя чаще других встречается в нашей повседневной жизни. Человек с давних времен научился приспосабливать ее под свои потребности, преобразуя в механическую работу при помощи разнообразных приспособлений и конструкций. Мы можем также преобразовывать одни виды энергии в другие.

В рамках механики(один из механическая энергия - это физическая величина, которая характеризует способность системы (тела) к совершению механической работы. Следовательно, показателем присутствия данного вида энергии является наличие некоторой скорости движения тела, обладая которой, оно может совершать работу.

Виды механической В каждом случае кинетическая энергия - величина скалярная, складывающаяся из суммы кинетических энергий всех материальных точек, составляющих конкретную систему. Тогда как потенциальная энергия одиночного тела (системы тел) зависит от взаимного положения его (их) частей в рамках внешнего силового поля. Показателем изменения потенциальной энергии служит совершенная работа.

Тело обладает кинетической энергией, если оно находится в движении (ее иначе можно назвать энергией движения), а потенциальной - если оно поднято над поверхностью земли на какую-то высоту (это энергия взаимодействия). Измеряется механическая энергия (как и прочие виды) в Джоулях (Дж).

Для нахождения энергии, которой обладает тело, нужно найти работу, затрачиваемую на перевод этого тела в нынешнее состояние из состояния нулевого (когда энергия тела приравнивается к нулю). Далее приведены формулы, согласно которым может быть определена механическая энергия и ее виды:

Кинетическая - Ek=mV 2 /2;

Потенциальная - Ep = mgh.

В формулах: m - масса тела, V - скорость его g - ускорение падения, h - высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Примерами того как механическая энергия может применяться человеком служат и изобретенные в древнейшие времена орудия (нож, копье и т.д.), и самые современные часы, самолеты, прочие механизмы. Как источники данного вида энергии и выполняемой ею работы могут выступать силы природы (ветер, морские течение рек) и физические усилия человека или животных.

Сегодня очень часто систем (например, энергия вращающегося вала) подлежит последующему преобразованию при производстве электрической энергии, для чего используют генераторы тока. Разработано множество устройств (двигателей), способных выполнять непрерывное превращение в механическую энергию потенциала рабочего тела.

Существует физический закон сохранения ее, согласно которому в замкнутой системе тел, где нет действия сил трения и сопротивления, постоянной величиной будет сумма обоих видов ее (Ek и Ep) всех составляющих ее тел. Такая система идеальна, но в реальности подобных условий нельзя достичь.