Физические свойства алмаза и графита. Месторождения, отличия и применения алмазов и графита Понятие и основные характеристики минералов

Для обычного человека алмаз и графит – это два совершенно не похожих и никак не связанных друг с другом элемента. Алмаз вызывает ассоциации с переливающимися драгоценностями, вспоминается выражение «блестит как алмаз». Графит – нечто серое, то, из чего обычно делают карандашные грифели.

Трудно поверить, что оба минерала – это одно и то же вещество разной формы обработки.

Понятие и основные характеристики минералов

Алмазом называют прозрачный кристалл, не имеющий цвета, обладающий высокими характеристиками преломления света. Выделяют следующие основные свойства минерала:

Природа зарождает как алмазы определенных форм, так и в нескольких кристаллических формах, что обусловлено его внутренним строением. Ярко выраженные кристаллы имеют форму куба или тэтраэдра с плоскими гранями. Иногда грани кажутся рельефными из-за наличия невидимых глазу многочисленных наростов и преобразований.

Хотя многие считают алмаз самым прочным материалом на свете, но науке известно вещество превосходящее алмаз по прочности более чем на 11% — «гипералмаз».

Графит представляет собой кристаллическое вещество серо-черного цвета, обладающее металлическим блеском. По составу графит имеет слоистую структуру, его кристаллы состоят из мелких тонких пластинок. Это очень хрупкий минерал, напоминающий по внешнему виду сталь или чугун. У графита низкая теплоемкость, но высокая температура плавления. Кроме того, этот минерал:


На ощупь графит жирный, а при проведении по бумаге оставляет следы. Это происходит из-за того, что атомы кристаллической решетки слабо связаны.

Отличие графита от алмаза, особенности строения и процесс перехода одного минерала в другой

Алмаз и графит – аллотропные по отношению друг к другу минералы, то есть имеют различные свойства, но являются разными формами углерода. Их основное отличие заключается лишь в химическом строении кристаллической решетки.

Кристаллическая решетка алмаза имеет вид тэтраэдра, в котором каждый атом окружен еще 4 атомами и является вершиной соседнего тэтраэдра, образуя бесконечное множество атомов, имеющих прочные ковалентные связи.

Графит на атомном уровне состоит из пластов шестиугольников с вершинами-атомами. Атомы хорошо связаны между собой только на уровне пластов, но пласты между собой сильной связи не имеют, что делает графит мягким и нестойким к разрушению. Именно эта особенность и позволяет получить из графита алмаз.

Физические и химические свойства алмаза и графита хорошо видны из таблицы.

Характеристика
Строение атомной решетки Кубическая форма Гексагональная
Светопроводимость Хорошо проводит свет Не пропускает свет
Электропроводимость Не обладает Имеет хорошую электропроводимость
Связи атомов Пространственные Плоскостные
Структура Твердость и хрупкость Слоистость
Максимальная температура, при которой минерал остается неизменным 720 по Цельсию 3700 по Цельсию
Цвет Белый, голубой, черный, желтый, бесцветный Черный, серый, стальной
Плотность 3560 кг/м.куб. 2230 кг/м.куб.
Использование Ювелирное дело, промышленность Литейное производство, электроугольная промышленность.
Твердость по шкале Мооса 10 1

Химическая формула алмаза и графита одна и та же – углерод (С), но процесс создания в природе разный. Алмаз возникает при очень высоких давлениях и мгновенном охлаждении, а графит, наоборот, при низком давлении и высокой температуре.

Выделяют следующие методы получения алмазов:

Процесс алмаза в графит аналогичен. Разница лишь в показателях давления и температуры.

Месторождение минералов

Алмазы пролегают на глубинах более 100 км при температуре 1300 ̊С. От взрывной волны вступает в действие кимберлитовая магма, образуя так называемые кимберлитовые трубки, которые и являются коренными месторождениями алмазов.

Кимберлитовая трубка названа в честь африканской провинции Кимберли, где она и была впервые открыта. Породы с алмазными залежами называют кимберлитами.

Самые известные ныне месторождения находятся в Индии, Южной Африке и в России. На коренных месторождениях, состоящих из кимберлитовых и лампроитовых трубок, добывают до 80% всех алмазов.

Найти алмазы в добытой породе помогают рентгеновские лучи. Большинство найденных камней используется в промышленности, так как не обладают достаточными характеристиками для ювелирной области. Промышленные камни разделяют на 3 вида:

  • борт – мелкие камни, имеющие зернистую структуру;
  • баллас – камни круглой или грушевидной формы;
  • карбонадо – камень черного цвета, получивший свое название из-за сходства с углем.

Любопытно, что наиболее крупные и выдающиеся по характеристикам алмазы получают свое уникальное название. Самые известные из них – «Шах», «Звезда Минаса», «Кохинур», «Звезда Юга», «Президент Варгас», «Минас-Жерайс», «Английский алмаз Дрездена» и др.

Графит образуется в результате видоизменения осадочных пород. Мексиканские, ногинские и мадагаскарские графитовые месторождения богаты рудой с графитом низкого качества. Менее распространенные – ботогольский и цейлонский тип, отличаются рудой, богатой высоким содержанием графита. Крупнейшие известные месторождения находятся на Украине и в Краснодарском крае.

Сфера применения

Алмаз и графит используют гораздо шире, чем может показаться на первый взгляд. Алмазы нашли свое применение в следующих сферах:


В процентном соотношении использования алмазов выглядит так:

  1. Инструменты, машинные детали – 60%.
  2. Обрамление шлифовочных кругов -10%.
  3. Переработка проволоки-10%.
  4. Бурение скважин – 10%.
  5. Ювелирные изделия, мелкие детали – 10%.

Что касается графита, то в чистом виде он практически не используется, а подвергаются предварительной обработке, хотя в разных сферах используется графит разного качества. Для канцелярских карандашей используют графит высочайшего качества. Наиболее широкое применение нашло в литейном производстве, обеспечивая гладкую поверхность различных форм стали. Здесь используется практически необработанный графит.

Электроугольная промышленность наряду с природным использует искусственно созданный графит, также получивший широкое применение благодаря особой чистоте и постоянству состава. Электропроводимость сделала графит материалом для электродов электрических приборов. В металлургии используется как смазочный материал.

Алмаз и графит – одинаковые по составу, но по-своему уникальные вещества. Польза графита для различных отраслей промышленности гораздо выше алмаза.

Алмаз же, призванный радовать своей красотой, неоценим для экономики, принося огромные доходы от применения в ювелирной промышленности.

вклаз. Ювелиры разделяют алмазы почти на 1000 сортов в зависимости от прозрачности, тона, густоты и равномерности окраски, наличия трещин, минеральных включений и некоторых других признаков.

С конца XIX века алмазы начинают применяться на производстве. В настоящее время экономический потенциал наиболее развитых государств в значительной мере связывается с использованием ими алмазов. Достаточно напомнить, что по оценкам западных экономистов промышленный потенциал США в случае отказа от импорта алмазов упадет в 2-3 раза. Применение алмазного инструмента существенно повышает чистоту обработки деталей, а производительность труда возрастает при этом в среднем на 50 %.

Массу алмазов принято измерять в каратах. Каратом в Древней Греции называли семена рожкового дерева, по форме напоминающие крупную горошину. После высушивания семена имели сравнительно постоянную массу - от 150 до 220 мг.

В промышленности используются преимущественно алмазы, непригодные для огранки: непрозрачные, с многочисленными включениями, трещинами, мелкозернистые сростки, алмазная крошка и т.п. Единой классификации технических алмазов не существует, поскольку каждая отрасль промышленности предъявляет свои требования к их сортировке.

Какие же свойства алмаза определяют его широкое использование в различных областях народного хозяйства? В первую очередь, конечно, исключительная твердость, которая, если судить по скорости истирания, в 50 раз выше, чем у корунда, и в десятки раз выше, чем у лучших сплавов, применяемых для изготовления резцов. Алмаз применяется для бурения горных пород и механической обработке самых разнообразных материалов.

Бурение скважин в толщах горных пород, слагающих земную кору, в широких масштабах применяется при поиске и разведке месторождений полезных ископаемых, а также при эксплуатации нефтяных и газовых залежей. Не обойтись без бурения и при выполнении всевозможных взрывных и инженерно-геологических работ, предшествующих возведению крупных зданий, плотин и многих других объектов.

В техническом отношении наиболее совершенным является вращательное алмазное бурение, которое осуществляется высверливанием скважин в толще горных пород с помощью буровых коронок, армированных алмазами. Коронки, армированные алмазами, повышают скорость бурения в 8-15 раз по сравнению с бурением, основанным на применении твердосплавных или дробовых коронок.

Наилучшими алмазами для бурения считаются тонкозернистые плотные карбонадо, поскольку они обладают повышенной твердостью и наименее подвержены раскалыванию. На втором месте стоят шаровидные балласы и небольшие монокристаллы алмаза округлой формы. На изготовление буровых коронок ежегодно расходуется около 0.6 тонны камней, что составляет примерно 10 % общего количества добываемых в мире технических алмазов.

Применение алмазных резцов и сверл на обработке цветных и черных металлов, твердых и сверхтвердых сплавов, стекла, каучука, пластмасс и других синтетических веществ дает огромный экономический эффект по сравнению с использованием твердосплавного инструмента. Чрезвычайно важно, что при этом не только в десятки раз повышается производительность труда, но одновременно значительно улучшается качество продукции. Обработанные алмазным резцом поверхности не требуют шлифовки, на них практически отсутствуют микротрещины, в результате чего многократно увеличивается срок службы получаемых деталей.

Совершенно незаменимы алмазы при вытачивании опорных рубиновых камней, используемых в часовых и многих других точных механизмах, а также при правке шлифовальных кругов.

Практически все современные отрасли промышленности, в первую очередь электротехническая, радиоэлектронная и приборостроительная, в огромных количествах используют тонкую проволоку, изготавливаемую из различных металлов. При этом предъявляются строгие требования к круговой форме и неизменности диаметра поперечного сечения проволоки при высокой чистоте поверхности. Такая проволока из твердых металлов и сплавов может быть изготовлена лишь с помощью алмазных фильер. Фильеры представляют собой пластинчатые алмазы с просверленными в них тончайшими (от 0.5 до 0.001 мм) отверстиями.

Широкое применение в промышленности находят и алмазные порошки. Их получают путем дробления низкосортных природных алмазов, а также изготавливают на специальных предприятиях по производству синтетических алмазов. Алмазные порошки используются в дисковых алмазных пилах, мелкоалмазных буровых коронках, специальных напильниках и в качестве абразива. Только с применением алмазных порошков удалось создать уникальные сверла, которые обеспечивают получение глубоких тонких отверстий в твердых и хрупких материалах. Такие сверла (алмазные жала) позволяют высверливать, например, в стекле отверстия диаметром 2 мм и длиной до 850 мм!

Алмазные порошки находят применение на гранильных фабриках, где все самоцветы, и в том числе алмазы, подвергаются огранке и шлифовке, благодаря чему невзрачные до этого камни становятся таинственно светящимися или ослепительно сверкающими драгоценностями, к неповторимой красоте которых никто не остается равнодушным.

С 50-х годов внимание ученых и конструкторов начинают привлекать другие физические свойства алмаза. Известно, что, попадая в кристалл, быстрые заряженные частицы выбивают электроны из его атомов, т.е. ионизируют вещество. В алмазе под действием заряженной частицы происходит световая вспышка и возникает импульс тока. Эти свойства позволяют использовать алмазы в качестве детекторов ядерного излучения. Свечение алмазов и возникновение импульсов электрического тока при облучении позволяет применять их в счетчиках быстрых частиц. Алмаз в качестве такого счетчика обладает неоспоримыми преимуществами по сравнению с газовыми и другими кристаллическими приборами.

Кристаллы алмаза, применимые в качестве счетчиков, крайне редки, поэтому цена их значительно выше, чем у равных по величине ювелирных камней. Некоторые кристаллы алмаза являются полупроводниками p- типа в широком диапазоне температур и давлений.

Использование алмазов в полупроводниковых и некоторых оптических приборах, а также в счетчиках ядерного излучения весьма перспективно, поскольку такие приборы способны работать в самых различных условиях, включая области низких и высоких температур, сильные электромагнитные и гравитационные поля, агрессивные среды и т.п. Следовательно, основанные на алмазах приборы могут оказаться незаменимыми при космических исследованиях, а также при изучении глубинного строения нашей планеты.

Алмазу с незапамятных времен отводилось особое место среди представителей минерального царства. Исключительность свойств алмаза порождала множество легенд, в которых наряду с чистейшим вымыслом встречались и описания некоторых реальных свойств камня.

В Индии, где много веков назад были найдены первые алмазы, накапливались и обобщались сведения о свойствах кристаллов алмаза и его месторождениях. Однако жрецы из религиозных и политических, а купцы из коммерческих соображений препятствовали распространению этих сведений и подменяли их всякого рода мистическими толками и суеверными выдумками.

По мнению древних индусов, алмазы образуются из пяти начал природы: земли, воды, неба, воздуха и энергии. При этом алмазы, как и люди, разделялись на четыре класса (Варны): брахманов , кшатриев , вайшьев и шудр . Брахманами назывались бесцветные и белые, как градины, цвета серебристых облаков и луны шестивершинные или октаэдрические кристаллы алмаза, считавшиеся высшей степенью совершенства. Алмазы с красноватым оттенком относились к кшатриям, зеленоватые- к вайшьям, а серые- к шудрам. Кшатрии оценивались в 3/4, вайшьи- в 1/2, а шудры- в 1/4 стоимости брахманов.

Многие индийские и, по-видимому, арабские легенды об алмазе были повторены в начале нашей эры в работе древнеримского естествоиспытателя Плиния Старшего Естественная история ископаемых тел. Наряду с легендами и суевериями Плиний приводит довольно точные характеристики некоторых свойств алмаза. Так, в частности, он описывает использование алмазов при обработке других твердых материалов и отмечает, что сам алмаз может быть обработан только другим алмазом. На протяжении последующих веков воззрения Плиния считались незыблемыми и переходили из одного трактата в другой, обрастая все большим числом фантастических вымыслов.

В средние века были составлены даже специальные книги о происхождении, магических и целебных свойствах различных камней - лапидарии.

Такого же рода лечебные книги печатались и в России. Одна из них, опубликованная в 1672 году, называлась Книга, глаголемая Прохладный вертоград, избранная от многих мудрецов о различных врачевских вещах, к здравию человеческому пристоящих .

В известной сказке о путешествиях Синбада - морехода рассказывается о хитроумном способе добычи алмазов. Где-то в далекой стране есть необычайно глубокое ущелье, дно которого усеяно алмазами. Доступ к сокровищам преграждают несметные полчища огромных змей. Однако люди нашли способ извлекать драгоценные камни и отсюда. Для этого с окружающих гор они сбрасывали в ущелье большие куски мяса. Алмазы прилипали к мясу, и огромные орлы уносили его в свои гнезда. Смелые искатели добирались до орлиных гнезд и собирали сверкающие кристаллы.

Случайно или нет, но в этой сказке есть два момента, которые увязываются с практическими данными. Одним из них является сп

Твердость алмаза можно определить с помощью нескольких известных ранее шкал. Твердость минералов – такой показатель, измерения которого лучше избегать, если такая возможность существует. Чтобы проверить твердость, нужно царапать минерал различными материалами. Фридрих Моос – известный ученый-минералог – в 1811 году предложил использовать для определения твердости камней специальную шкалу, придуманную им. Впоследствии ее назвали шкалой Мооса.

Что же такое твердость? Простыми словами, это сопротивление, которое оказывает минерал, когда его пытаются поцарапать другим минералом или материалом. Фридрих Моос разработал шкалу с коэффициентом твердости от 1 до 10, где 1 – это тальк, а 10 – алмаз. Ученый взял в свою эталонную шкалу легкодоступные минералы и построил их в линейку по возрастанию сопротивления другим минералам. Числа твердости, указанные Моосом, не определяют истинную твердость минерала.

Алмаз – самый твердый в мире минерал естественного происхождения, по шкале Мооса его показатель равняется 10. Корунд имеет показатель, равный 9. Ученый удалось синтезировать карборунд, который превосходит по твердости корунд, но алмаз он все равно не царапает. Сталь по твердости намного уступает алмазу, ее твердость находится в диапазоне от 5,5 до 7,5 в зависимости от сплава. Тверже алмаза сплав стали сделать не удалось. Но твердость стали определяется с помощью алмазных пластин: насколько пластинка или пирамидка вдавится в образец стали, такая и будет твердость. Сейчас все чаще на производстве алмазы заменяются стальными шариками специальных сплавов.

Прочность алмаза, или почему алмаз такой твердый

Очень давно, когда на Земле еще не было жизни, а сама планета была молодой, на поверхности происходили природные процессы. Тектоническая порода находилась в расплавленном состоянии, она перемешивалась под действием высоких температур и паров различных испарений, а потом медленно остывала. Все эти процессы привели к формированию самого твердого камня, который сейчас называется алмазом.

Происхождение названия данного камня уходит своими корнями в глубокую древность, почему его стали называть именно алмазом, до конца остается неизвестным, но существует ряд предположений:

  1. Слово алмаз пришло из Греции. “Адамас” – “твердый”, “несокрушимый”.
  2. “Ал-ма” от персидского “твердый”.
  3. Название камня происходит от женского имени Элиза или Элайза. Полная форма этого имени Елизавета, означает «Божья милость». По легенде была девушка, которая обладала даром исцеления людей. Имя ее было Элиза. Она была крепка душой и телом, могла своим умением поднять на ноги даже самого тяжелобольного человека. Однажды Элиза влюбилась в прекрасного юношу, он ответил на ее чувства, их любовь была прекрасна, но длилась недолго. Элиза отправилась в дальний путь, чтобы пополнить запасы целебных трав. В это время ее возлюбленный тяжело заболел. Когда Элиза вернулась, он был уже мертв. Девушка жила в горах, она зашла в одну из пещер горной местности и горько заплакала. Это были самые первые ее слезы, они обратились в камни, которые потом стали называть алмазами.

Твердость алмаза и графита

Интересным фактом является то, что алмаз – самый крепкий минерал, а графиту по шкале Мооса соответствует число 1, что означает, что он самый мягкий.

Алмаз и графит состоят из одинаковых атомов одного и того же химического элемента – углерода. Тогда почему одно вещество самое мягкое, а другое – самое твердое? Ответ очень прост. Все дело в химических связях или кристаллических решетках этих минералов. Атомы углерода по-разному связаны между собой, поэтому они проявляют разные химические и физические свойства: имеют различный внешний вид, твердость, пластичность, блеск и другие параметры. Графит имеет слоистую структуру. Атомы углерода между собой связаны слабо, это и объясняет то, что графит очень мягкий.

Лонсдейлит – синтетический алмаз

В природе нет материала тверже алмаза, но наука не стоит на месте. Ученым удалось синтезировать вещество, которое является на 58% прочнее алмаза. Название этого материала – лонсдейлит. Он может выдержать давление на 55 ГПа больше, чем самый твердый природный минерал. Но его использование почти невозможно, потому что его очень трудно получать. Стоимость получения не оправдывает затраченных средств, а в его применении нет особой необходимости. Назван лонсдейлит в честь кристаллографа Кетлин Лонсдейл, которая была родом из Британии.

Не каждый знает, но алмаз и графит - две формы одного и того же вещества. Эти минералы полностью отличаются друг от друга по твердости и по характеристикам преломления и отражения света. Причем отличия весьма существенные. Алмаз - наиболее твердый в мире минерал, по шкале Мооса он представляет собой эталон - 10, тогда как твердость графита по этой шкале - всего 2. Таким образом, алмаз и графит одновременно самые похожие и непохожие вещества в мире.

Кристаллические решетки алмаза и графита

Каждое из них происходит из углерода, который, в свою очередь, является самым распространенным элементом биосферы. Он присутствует как в атмосфере, так и в воде, в биологических объектах. В земле он представлен в составе нефти, газа, торфа и так далее. Встречается и в качестве залежей графита и алмаза.

Больше всего углерода в организмах. Боле того, ни один из них не может без него обойтись. А происхождение этого минерала в остальных частях планеты как раз и объясняется нахождением когда-то там живых организмов.

Много споров сопровождает вопрос, откуда взялся графит и алмазы, ведь недостаточно, чтобы был один углерод, необходимо также, чтобы выполнялись определенные условия, при которых этот химический элемент принимал новую структуру. Считается, что происхождение графита метаморфическое, а алмазов - магматическое. Это означает, что образование алмазов на планете сопровождают сложные физические процессы, скорее всего, в глубинных слоях земли при горении и взрывах в присутствии кислорода. Ученые предполагают, что в этот процесс также замешан метан, но точно никто не знает.

Отличия между графитом и алмазом

Основное отличие - это строение алмаза и графита. Алмаз представляет собой минерал, форму углерода. Характеризуется метастабильностью, что означает, что он способен оставаться в неизменно вид бесконечно долго. Алмаз переходит в графит при некоторых специфических условиях, например, при высокой температуре в вакууме.

Графит также является модификацией углерода. Его структура делает минерал очень слоистым, поэтому самое распространенное его применение - изготовления грифеля для карандаша.

Явление, при котором вещества, образованные одним и тем же химическим элементом, имеют разные физические свойства, называется аллотропией. Существуют и другие подобные вещества, однако эти два минерала имеют наибольшую разницу между собой. Решающую роль в этом играют особенности строения кристаллической структуры каждого из минералов.

Алмаз имеет невероятно прочную связь между атомами, что обусловлено их плотным расположением. Смежные атомы ячейки имеют форму куба, где частицы расположены на углах, гранях и внутри их. Это тетраэдрический тип строения. Такая геометрия атомов обеспечивает максимально плотную их организацию. Поэтому твердость алмаза такая высокая.

Низкий атомный номер углерода, показывающий, что атом имеет небольшую атомную массу, а соответственно и радиус, делает его самым твердым веществом на планете. Вместе с тем это совершенно не означает прочность. Расколоть алмаз довольно легко, достаточно его ударить. Такое строение объясняет высокий коэффициент теплопроводности и светопреломления алмаза.

Структура графита совершенно иная. На атомарном уровне она представляет собой ряд пластов, расположенных в разных плоскостях. Каждый из этих пластов представляет собой шестиугольники, которые примыкают друг к другу подобно сотам. При этом сильной связью обладают только атомы, расположенные в пределах каждого слоя, а между слоями связь хрупкая, они практически независимы друг от друга.

След от карандаша - это как раз и есть отделяемые слои графита. Из-за особенности своего строения графит имеет невзрачный вид, поглощает свет, обладает электропроводностью и металлическим блеском.

Получение алмаза из графита

Долгое время получить алмаз было технологически сложно, но к сегодняшнему дню эта не такая и трудная задача. Основной проблемой является повторение процессов в лаборатории в короткий промежуток времени, которые в природе проходят за миллионы лет. Ученые доказали, что условиями перехода алмаза из графита являлась высокая температура и давление.

Впервые такие условия были получены с помощью взрыва. Взрыв является химическим процессом, который представляет собой горение при высокой температуре и скорости. После этого собрали остатки графита, и оказалось, что внутри его образовались маленькие алмазы. То есть превращение произошло только фрагментарно. Причиной этого является разброс параметров внутри самого взрыва. Там, где условия были достаточными для такого превращения, оно и произошло.

Натуральный необработанный алмаз

Такие параметры сделали взрывы малоперспективными для получения алмаза. Однако опыты не прекратились, на протяжении длительного времени ученые продолжали проводить их, чтобы каким-то образом получить этот минерал. Более-менее стабильный результат получился, когда графит попытались нагреть импульсно до температуры в две тысячи градусов. В этом случае удалось получить алмазы приличных размеров.

Однако такие опыты дали еще один неожиданный результат. После превращения графита в алмаз происходил обратный переход алмаза в графит при уменьшении давления, то есть происходила графитизация. Таким образом, получение стабильного результата только с помощью одного давления достичь не удавалось. Тогда вместе с увеличением давления начали нагревать графит. Спустя некоторое время, удалось вычислить диапазон давлений и температур, при которых кристаллы алмаза можно было бы получать. Однако эти методы все еще не позволяли получить минерал ювелирного качества.

Для того чтобы получить камни, пригодные для создания украшений, начали выращивать алмазы с помощью применения затравки. В качестве ее использовали готовый кристалл алмаза, который нагревали до температуры 1500 градусов, что стимулировало сначала быстрый, а потом медленный рост. Однако применение метода в промышленных масштабах было нерентабельным. Потом начали в качестве подкормки использовать метан, который при таких условия распадался на углерод и водород. Как раз этот углерод и выступал, если можно так сказать, кормом алмаза, позволяющим ему расти намного быстрее.

Таким образом, сегодня этот метод используется для создания искусственных алмазов. И хотя он и является рентабельным, стоимость таких целых искусственных минералов остается высокой, что делает их не сильно популярными по сравнению с заменителями бриллиантов.

Месторождения минералов

Алмазы зарождаются на глубине 100 км и при температуре 1300 градусов. Кимберлитовая магма, которая образует кимберлитовые трубки, вступает в действие в результате взрывов. Именно такие трубки и представляют собой коренные месторождения алмазов. Впервые подобная трубка была открыта в африканской провинции Кимберли, откуда и пошло ее название.

Наиболее известные месторождения находятся в Индии, России и Южной Африке. На коренные месторождения приходится 80 % всех добываемых алмазов.

Чтобы найти алмаз в природе, используют рентген. Большинство из камней, которые находят, непригодны для ювелирного производства, так как обладают значительным количеством дефектов, в том числе трещинами, включениями, посторонними оттенками флуоресценцией и так далее. Поэтому их применение техническое. Такие камни делят на три категории:

  • борт - камни с зональной структурой;
  • баллас - камни, которые обладают круглой или грушевидной формой;
  • карбонадо - черный алмаз.

Алмазы большого размера с выдающимися характеристиками, как правило, получают свое название. Кроме того, высокая стоимость камня делает его желанным для многих, что гарантирует «кровавую историю».

Графит образуется в результате изменения осадочных пород. В Мексике и на Мадагаскаре можно встретить руду с графитом низкого качества. Наиболее известные месторождения - в Краснодаре и на Украине.

Применение

Применение как алмаза, так и графита намного шире, чем кажется. Для алмаза можно выделить несколько сфер использования.

В ювелирной промышленности алмазы используют только в огранке, как известно, они носят название бриллиантов. Всего 20 % всех добытых камней пригодны для украшений, а минералов высокого качества и куда меньше.

Бриллианты - самые дорогие в мире камни. По стоимости только некоторые экземпляры рубинов могут сравниться с ними. На стоимость минералов влияют огранка, цвет, оттенок и чистота. Обычно некоторые из этих характеристик невооруженным глазом являются незаметными, однако выявляются при экспертизе.

Использование бриллиантов в украшениях очень распространено. Часто они выступаю как единственный камень или дополняют высококачественные сапфиры, рубины, изумруды. Наиболее частое применение камней - кольца для помолвки.

В технической сфере обычно берут второсортное сырье, с дефектами или с различными оттенками. Технические алмазы разделяются на несколько подкатегорий.

  • алмазы определенной формы, которая годится для изготовления подшипников, наконечников сверл и так далее;
  • необработанные камни;
  • камушки с дефектами, применяемые только для изготовления алмазной крошки и порошка.

Последние применяются либо в очень маленьких деталях, либо в качестве напыления для изготовления режущего и шлифовального инструмента.

В электронике применяются иглы, которые являют собой необработанные кристаллы, имеющие от природы острую вершину, или осколки с такой же вершиной. Буровые установки в промышленности также содержат алмазы. Прослойки из этого минерала используются в микросхемах, счетчиках и так далее, происходит это благодаря высокому коэффициенту теплопроводности и сопротивлению.

Около 60 % всех технических алмазов используется в инструментах. Остальные 40 % в равных количествах:

  • при бурении скважин;
  • переработке;
  • в мелких деталях ювелирных изделий;
  • в шлифовальных кругах.

В чистом виде графит не используется. Его, как правило, обрабатывают. Графит высочайшего качества применяется в виде стержня для карандаша. Наиболее широкое применение графит находит в литье. Здесь он применяется для обеспечения гладкой поверхности стали. Для этого он используется в необработанном виде.

В электроугольной промышленности используют не только природного происхождения минерал, но и созданный. Последний имеет высокую однородность по качеству и чистоте. Высокая проводимость тока делает его также широко используемым для изготовления электродов в приборах. Кроме того, он применяется в качестве щеток для двигателя. В металлургии графит используют как смазочный материал.

Графитовые стержни за свою способность замедлять нейтроны раньше широко использовались при создании атомных реакторов. В частности, именно боровые стержни с графитовыми наконечниками выступали в качестве стержней управления-защиты на Чернобыльской АЭС. Одна из проблем, которая после привела к аварии, была в том, что для гашения цепной реакции нужно было нейтроны поглощать, за что отвечал бор, а не замедлять. Поэтому в момент, когда стержни опустили в активную зону реактора, его энергия возросла скачком, что привело к перегреву. Но это была всего лишь одна из множества причин.

Таким образом, алмаз и графит - два разных минерала с одинаковым элементом в основе. Их структуры делают свойства разными, что и представляет интерес. Каждый из них по-своему красив и имеет очень широкое применение как в очень сложных конструкциях, так и в предметах повседневности.

Алмаз, графит и уголь - состоят из однородных атомов графита, но имеют различные кристаллические решетки.

Краткая характеристика: алмаз, графит и уголь

Кристаллические решетки графита не имеют прочных связей, они представляют собой отдельные чешуйки и как бы скользят друг по другу, легко отделяясь от общей массы. Графит часто используют в качестве смазки для трущихся поверхностей. Уголь состоит из мельчайших частиц графита и таких же малых частиц углерода, находящегося в соединении с водородом, кислородом, азотом. Кристаллическая решетка алмаза жесткая, компактная, обладает высокой твердостью. Тысячелетиями люди даже не подозревали, что эти три вещества имеют что-то общее. Все это - открытия более позднего времени. Графит серый, мягкий, жирный на ощупь совсем не похож на черный уголь. Внешне он скорее напоминает металл. Алмаз - сверхтвердый, прозрачный, сверкающий, по внешнему виду совсем отличен от графита и угля, (подробнее: ). Никаких признаков их родства не давала и природа. Месторождения угля никогда не соседствовали с графитом. В их залежах никогда геологи не обнаруживали сверкающих кристаллов алмаза. Но время не стоит на месте. В конце XVII века флорентийским ученым удалось сжечь алмаз. После этого не осталось даже крохотной кучки золы. Английский химик Теннант через 100 лет после этого установил, что при сжигании одинаковых количеств графита, угля, и алмаза образуется одинаковое количество углекислого газа. Этот опыт открыл истину.

Взаимопревращения алмаза, графита и угля

Сразу же ученых заинтересовал вопрос: а возможно ли превращение одной аллотропической формы углерода в другую? И ответы на эти вопросы были найдены. Оказалось, что алмаз полностью переходит в графит , если его нагреть в безвоздушном пространстве до температуры 1800 градусов. Если через уголь пропускают электрический ток в специальной печи, то он превращается в графит при температуре 3500 градусов.

Превращение - графита или угля в алмаз

Труднее далось людям третье превращение - графита или угля в алмаз . Почти сто лет пытались осуществить его ученые.

Получить из графита алмаз

Первым был, видимо, шотландский ученый Генней . В 1880 году он начал серию своих опытов. Он знал, что плотность графита - 2,5 грамма на кубический сантиметр, а алмаза - 3,5 грамма на кубический сантиметр. Значит, надо уплотнить укладку атомов и получить из графита алмаз , решил он. Он брал прочный стальной орудийный ствол, наполнял его смесью углеводородов, прочно закрывал оба отверстия и накаливал до красного каления. В раскаленных трубах возникало гигантское, по понятиям того времени, давление. Не раз оно разрывало сверхпрочные орудийные стволы, как авиационные бомбы. Но все-таки некоторые выдержали весь цикл нагреваний. Когда они остыли, Генней нашел в них несколько темных, очень прочных кристаллов.
Я получил искусственные алмазы,
- решил Генней.

Способ получения искусственных алмазов

Через 10 лет после Геннея французский ученый Анри Муассон подверг стремительному охлаждению насыщенный углеродом чугун. Мгновенно застывшая поверхностная корка его, при остывании уменьшаясь в размерах, подвергала внутренние слои чудовищному давлению. Когда затем Муассон растворял в кислотах чугунные ядрышки, он находил в них крохотные непрозрачные кристаллики.
Я нашел еще один способ получения искусственных алмазов !
- решил изобретатель.

Проблема искусственных алмазов

Спустя еще 30 лет, проблемой искусственных алмазов стал заниматься английский ученый Парсонс . В его распоряжении были гигантские прессы принадлежавших ему заводов. Он стрелял из пушки прямо в дуло другого оружия, но алмазов ему получить не удалось. Впрочем, уже во многих развитых странах мира лежали в музеях искусственные алмазы разных изобретателей. И было выдано не мало патентов на их получение. Но в 1943 году английские физики подвергли скрупулезной проверке полученные искусственным путем алмазы. И оказалось, что все они не имеют ничего общего с настоящими алмазами, кроме только алмазов Геннея. Они оказались настоящими. Это сразу же стало загадкой, остается загадкой и сегодня.

Превращение графита в алмаз

Наступление продолжалось. Во главе его встал лауреат Нобелевской премии американский физик Перси Бриджмен . Почти полвека занимался он усовершенствованием техники сверхвысоких давлений. И в 1940 году, когда в его распоряжении оказались прессы, могущие создавать давление до 450 тысяч атмосфер, он начал опыты по превращению графита в алмаз . Но осуществить это превращение он не смог. Графит, подвергнутый чудовищному давлению, остался графитом. Бриджмен понимал, чего не хватает его установке: высокой температуры. Видимо, в подземных лабораториях, где создавались алмазы, играла роль и высокая температура. Он изменил направление опытов. Ему удалось обеспечить нагрев графита до 3 тысяч градусов и давление до 30 тысяч атмосфер. Это было уже почти то, что, как мы знаем теперь, необходимо для алмазного превращения. Но и недостающее «почти» не позволило Бриджмену достичь успеха. Честь создания искусственных алмазов досталась не ему.

Первые искусственные алмазы

Первые искусственные алмазы были получены английскими учеными Бэнди, Холлом, Стронгом и Вентроппом в 1955 году. Они создавали давление в 100 тысяч атмосфер и температуру в 5000 градусов. В графит добавляли катализаторы - железо, ром, марганец и т. д. И на границе графита и катализаторов возникли желто-серые непрозрачные кристаллы технических искусственных алмазов. Что ж, алмаз идет не только на брилианты, он используется и на заводах, и на фабриках. Впрочем, несколько позже американские ученые нашли способ получать и прозрачные кристаллы алмаза. Для этого грант подвергают давлению в 200 тысяч атмосфер, а затем электрическим разрядом нагреванию до температуры 5 тысяч градусов. Кратковременность разряда - он длится тысячные доли секунды - оставляет установку холодной, и алмазы получаются чистыми и прозрачными.

Создание искусственных алмазов

Советские ученые пришли к созданию искусственных алмазов своим путем. Советский физик О.И. Лейпунский провел теоретические исследования и заранее установил те температуры и давления, при которых возможно алмазное превращение графита. Цифры эти в те годы - это было в 1939 году - показались удивительными, стоящими за границами достижимого для современной техники: давление не менее 50 тысяч атмосфер и температура 2 тысячи градусов. И все-таки, за стадией теоретических расчетов пришла пора создания опытных конструкций, а затем и промышленных установок. И сегодня работают многочисленные устройства, выпускающие искусственные алмазы и другие, еще более твердые вещества. Высшее достижение природы в твердости материала не только достигнуто, но уже и перекрыто. Такова история открытия третьего превращения углерода, самого важного для современной техники.

Как алмаз возник в природе

Но что осталось самого удивительного в алмазном превращении углерода? То, что ученые до сих пор не понимают, как алмаз возник в природе ! Известно, что единственным коренным месторождением алмазов являются кимберлитовые трубки . Это глубокие цилиндрические колодцы диаметром в несколько сот метров, заполненные синей глиной - кимберлитом, с которой вместе и были вынесены на поверхность земли драгоценные камни.

Гипотеза глубинного рождения алмазов

Наиболее ранней была гипотеза глубинного рождения алмазов . Согласно этой гипотезе, сверкающие кристаллы выделились из расплавленной магмы на глубине около 100 километров, а затем вместе с магмой по трещинам и разломам медленно поднимались к поверхности. Ну а с глубины в 2-3 километра магма прорывала и вырывалась на поверхность, образуя кимберлитовую трубку.

Взрывная гипотеза

На смену этой гипотезе пришла другая, вероятно, ее следует назвать взрывной гипотезой . Ее выдвинули Л. И. Леонтьев, А. А. Кадемекий, В. С. Трофимов . По их мнению, алмазы возникают на глубине всего 4-6 километров от земной поверхности. А требующееся для возникновения алмазов давление создается взрывом, вызванным некоторыми взрывчатыми веществами, проникшими в занимаемые магмой полости из окружающих осадочных пород. Это могут быть нефть, битумы, горючие газы. Авторы гипотезы предложили несколько вариантов химических реакций, в результате которых образуются взрывчатые смеси и возникает свободный углерод. Эта гипотеза объясняла и высокую температуру, требующуюся для алмазного превращения, и гигантское давление. Но не все особенности кимберлитовых трубок она объясняла. Очень легко было доказать, что породы кимберлитовой трубки образовались при давлении, не превышающем 20 тысяч атмосфер, но невозможно доказать, что они возникли при более высоком давлении. Сегодня геофизики достаточно точно установили, для каких пород требуются те или иные давления и температуры образования. Скажем, постоянный спутник алмаза - минерал пироп - требует 20 тысяч атмосфер, алмаз - 50 тысяч. Большее, чем для пиропа, и меньшее, чем для алмаза, давление требуют коэсит, стишовит, пьезолит. Но ни этих, ни других пород, требующих для своего образования столь высоких давлений, в кимберлите нет. Единственное исключение здесь - алмаз. Почему это так? Ответить на этот вопрос решил доктор геолого-минералогических наук Э. М. Галымов . Почему, спросил он себя, давление в 50 тысяч атмосфер должно быть обязательно свойственно всей массе магмы, в которой творятся алмазы? Ведь магма - поток. В ней возможны и вихри, и быстрины, и гидравлические удары, и пузырьки возникающей местами кавитации.

Гипотеза рождения алмаза в режиме кавитации

Да, именно кавитация ! Это удивительно неприятное явление, несущее не мало бед гидравликам! Кавитация может возникнуть на лопастях гидравлической турбины, если она хоть чуть-чуть вышла за границы рассчитанного режима. Такая же беда может постичь и лопасти гидравлического , перешедшего на форсированный режим. Кавитация может разрушить и лопасти пароходного винта, словно бы надорвавшегося в борьбе за скорость. Она губит, разрушает, разъедает. Да, это точнее всего: разъедает! Сверхпрочные стали, блиставшие зеркальной полировкой поверхностей, превращаются в рыхлую пористую губку. Словно тысячи крохотных беспощадных и жадных ртов рвали по крохам металл в том месте, где его изгрызла кавитация. Да еще ртов, которым «по зубам» легированный металл, от которого отскакивает напильник! Не мало аварий турбин и насосов, гибели пароходов и теплоходов произошло из-за наличия кавитации. И ста лет не прошло, как разобрались, что же это такое - кавитация. А действительно, что же это такое? Представим поток жидкости, движущейся в трубе переменного сечения. Местами, в сужениях, скорость течения растет, местами, там, где поток расширяется, скорость течения падает. Одновременно, но по обратному закону изменяется давление внутри жидкости: там, где вырастает скорость, резко падает давление, а там, где скорость уменьшается - давление растет. Этот закон обязателен для всех движущихся жидкостей. Можно представить, что при некоторых скоростях давление падает до той величины, при которой жидкость закипает, и в ней возникают пузырьки пара. Со стороны кажется, что жидкость в месте кавитации начала кипеть, ее заполняет белая масса крохотных пузырьков, она становится непрозрачной. Вот эти-то пузырьки и являются главной бедой при кавитации. Как рождаются и как умирают кавитационные пузырьки, еще недостаточно изучено. Неизвестно, заряжены ли внутренние их поверхности. Неизвестно, как ведет себя вещество паров жидкости в пузырьке. А Галымову было поначалу неизвестно, могут ли вообще возникнуть кавитационные пузырьки в магме, заполняющей кимберлитовую трубку. Ученый произвел расчеты. Оказалось, что кавитация возможна при скоростях течения магмы, превышающих 300 метров в секунду. Такие скорости легко получить для воды, но может ли течь с такой же скоростью тяжелая, густая, вязкая магма? Снова расчеты, расчеты и долгожданный ответ: да, может! Для нее возможны скорости и в 500 метров в секунду. Дальнейшие расчеты должны были выяснить, будут ли достигаться в пузырьках требующиеся величины температуры и давления - 50 тысяч атмосфер давления и 1500 градусов температуры. И эти расчеты дали положительные результаты. Средняя величина давления в пузырьке в момент охлопывания достигала миллиона атмосфер! А максимальное давление может быть в десять раз больше. Температура же в этом пузырьке имеет величину в 10 тысяч градусов. Что и говорить, условия далеко перешагнули через предельные для алмазного превращения. Скажем сразу, условия, которые создает кавитационный пузырек для зарождения алмаза, очень своеобразны. Помимо температур и давлений, по временам возникающих в крохотных объемах этих пузырьков, там проносятся ударные волны, сверкают удары молний - вспыхивают электрические искры. Звуки вырываются за пределы узкого участка жидкости, охваченного кавитацией. Соединяясь, они воспринимаются как своеобразное гудение, подобное тому, которое доносится из закипающего чайника. Но именно такие условия являются идеальными для зарождающегося алмазного кристалла. Поистине, его рождение происходит в грозе и молниях. Можно упрощенно и опуская многие детали представить происходящее внутри кавитационного пузырька. Вот повысилось давление жидкости, и кавитационный пузырь начинает исчезать. Двинулись к центру его стенки, и от них сразу же отрываются ударные волны. Они движутся в ту же сторону к центру. Не надо забывать об их особенностях. Во-первых, они движутся со сверхзвуковой скоростью, во-вторых, за ним остается крайне возбужденный газ, у которого резко поднялись и давление, и температура. Да, это та же самая ударная волна, что движется по куску горящего тола и превращает мирно горение в яростный, всесокрушительный взрыв. В центре пузырька ударные волны, бегущие с разных сторон, сходятся. При этом плотность вещества в этой точке схождения превосходит плотность алмаза. Трудно сказать, какую форму там приобретает вещество, но оно начинает расширяться. При этом ему приходится преодолевать противодавление, измеряемое миллионами атмосфер. За счет этого расширения оказавшееся в центре пузырька вещество охлаждается с десятков тысяч градусов всего до тысячи градусов. И родившийся в первые мгновения расширения зародыш кристалла алмаза сразу попадает в область температур, при которых ему уже не грозит превращение в графит. Мало того, новорожденный кристаллик начинает расти. Таково, по Галымову, таинство рождения редчайшего из творений природы и драгоценнейшего для современной техники кристалла, одного из аллотропных состояний того самого элемента, которому обязана своим существованием жизнь на нашей планете. Но это совершенно другая сторона в судьбе углерода, которому обязаны своим существованием алмаз, графит и уголь.